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Abstract

A race for technological supremacy in AI could lead to seri-
ous negative consequences, especially whenever ethical and
safety procedures are underestimated or even ignored, lead-
ing potentially to the rejection of AI in general. For all to
enjoy the benefits provided by safe, ethical and trustworthy
AI systems, it is crucial to incentivise participants with ap-
propriate strategies that ensure mutually beneficial normative
behaviour and safety-compliance from all parties involved.
Little attention has been given to understanding the dynamics
and emergent behaviours arising from this AI bidding war,
and moreover, how to influence it to achieve certain desir-
able outcomes (e.g. AI for public good and participant com-
pliance). To bridge this gap, this paper proposes a research
agenda to develop theoretical models that capture key fac-
tors of the AI race, revealing which strategic behaviours may
emerge and hypothetical scenarios therein. Strategies from
incentive and agreement modelling are directly applicable
to systematically analyse how different types of incentives
(namely, positive vs. negative, peer vs. institutional, and their
combinations) influence safety-compliant behaviours over
time, and how such behaviours should be configured to en-
sure desired global outcomes, studying at the same time how
these mechanisms influence AI development. This agenda
will provide actionable policies, showing how they need to
be employed and deployed in order to achieve compliance
and thereby avoid disasters as well as loosing confidence and
trust in AI in general.

Introduction
Research and development in different areas of fundamen-
tal and applied Artificial Intelligence (AI) have been mak-
ing encouraging progress. Within the research community,
there is a growing effort to make progress towards Arti-
ficial General Intelligence (AGI). AI brings enormous po-
tential benefits across many sectors, being recognised as
a strategic priority by a range of actors and stakehold-
ers, including representatives of various businesses, pri-
vate research groups, companies, and governments (AI-
Roadmap-Institute 2017b). The media attention as well as
the (un)announced business and political ambitions indicate
that an AI bidding war has been triggered, competing to be
the first to develop and deploy a powerful, transformative
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AI (Armstrong, Bostrom, and Shulman 2016; Baum 2017;
Bostrom 2017; Cave and Ó hÉigeartaigh 2018). These AI
systems could be either AGI, able to perform a broad set of
intellectual tasks while continually improving itself, suffi-
ciently powerful specialised AIs or even AI specifically de-
veloped for espionage and cyberterrorism.

An AI race for technological advantage towards power-
ful AI systems could lead to serious negative consequences,
especially when ethical and safety procedures are underesti-
mated or even ignored (Armstrong, Bostrom, and Shulman
2016; Cave and Ó hÉigeartaigh 2018). Safety and ethical
agreements and regulations can be adopted to ensure that
all parties involved in the race will comply with a set of
mutually agreed standards and norms (Shulman and Arm-
strong 2009; Shulman and Armstrong 2009). However, as
experience with many international treaties, such as cli-
mate change, fisheries and timber agreements (Barrett 2016;
Cherry and McEvoy 2013; Nesse 2001) has shown, the au-
tonomy and sovereignty of the parties involved will make
monitoring and compliance enforcement difficult (if not im-
possible). Therefore, for all to enjoy the benefits provided by
a safe, ethical and trustworthy AI, it is crucial to enact ap-
propriate incentivising strategies in order to ensure mutual
benefits and safety-compliance from all sides involved.

This position paper sets out a research agenda (i) to de-
velop theoretical models (both analytic and simulated) that
capture key factors of an AI race, in order to provide under-
standing on the dynamics and emergent strategic behaviours
for different hypothetical race scenarios; and furthermore,
(ii) to examine how incentives can be used to ensure desired
outcomes and equilibria in this race. To this end, we com-
bine research on incentives and agreement modelling, with
the dynamical approaches that analyse population-wide dy-
namics, typically employed in Evolutionary Game Theory
(EGT) (Sigmund 2010; Hofbauer and Sigmund 1998). To-
gether, they will permit us to systematically explore how
different types of incentives (namely, positive vs. negative,
peer vs. institutional, and their combinations) can influence
safety-compliance behaviours over time, and how such be-
haviours should be configured to ensure desired global out-
comes (i.e. high levels of safety-compliance, possibly in-
cluding compliant information sharing).

This research agenda is expected to lead to specific out-
comes concerning the AI bidding war we are currently ob-



serving. On the one hand, it will provide methodologies for
the investigation of AI race dynamics, including interven-
tion mechanisms to influence outcomes. On the other, it will
provide systematic understanding on how to promote safety
compliance and the production of AI systems that benefit
the many as opposed to the few. Moreover, conclusions de-
rived from this project have the potential to resolve issues
in other multiparty interaction domains, such as business
transactions and international environmental agreements, for
which commitments have been proven crucial (Singh 2013;
Nesse 2001).

The rest of the paper is structured as follows. The next
section describes relevant factors influencing the AI race
and existing approaches for agreements and incentives mod-
elling. It then describes our research agenda, which includes
three directions aiming to provide a methodolgy for AI
race modelling. Some preliminary results will be briefly de-
scribed, elaborated further in the Supplementary Informa-
tion section.

Background and Challenges
Below we review relevant issues and potential factors in AI
race modelling, and EGT (Sigmund 2010) research on in-
centives, commitment and agreement modelling.

AI race and modelling
Potential AI disaster scenarios are many (Armstrong,
Bostrom, and Shulman 2016; Pamlin and Armstrong 2015).
However the uncertainties in accurately predicting these out-
comes are high. In general, the first AGI are likely to be ex-
tremely powerful and, if not developed and controlled prop-
erly, might not be guaranteed human friendly (Armstrong,
Bostrom, and Shulman 2016; Bostrum 2014). Those that
first successfully develop more powerful AI will have sig-
nificant benefits over others, and even ‘the winner takes all’
scenario might come about (AI-Roadmap-Institute 2017b).
It is generally agreed that an AI-related disaster is more
likely to occur when safety measures are ignored more of-
ten, which might be fostered by the speed and competition
of the race. The risk of AI-related disaster increases when
teams/developers do not devote sufficient attention and re-
sources to safety in such a powerful system (AI-Roadmap-
Institute 2017b) as a result of the on-going race’s pressure.

Regardless of this disaster risk, people and teams can have
different (biased) perceptions or beliefs about the level and
nature of the risk as well as adopt different risk-taking be-
haviours (e.g. with different levels of risk-aversion). A high
belief in risk might lead to fear mongering concerning both
AI and AGI, thereby leading to overregulation and unnec-
essary obstruction to the development of AI and the realisa-
tion of social/economic benefits. On the other hand, a low
belief in risk might lead to more risk-taking behaviours, and
hence safety measures being omitted more often. Further-
more, envisaging the AI race at diverse temporal scales is
likely to bring about distinct aspects that should be focused
on (AI-Roadmap-Institute 2017a). For instance, each team
might anticipate different speeds of reaching the first gen-
eral AI system. A low belief about fast AGI arrival could

result in miscalculating the risks of unsafe AGI deployment
by non-compliant rogue teams.

Other important strategic aspects in the AI development
race concern different types of openness, including open-
ness about source code, science, data, safety techniques, ca-
pabilities, and goals (Bostrom 2017). Some forms of open-
ness, e.g. about safety measures, are plausibly positive both
short-term and long-term. Others, such as openness about
source code, science, and possible capabilities, could inten-
sify the competitive situation. A central concern is that open-
ness could exacerbate a racing dynamic: competitors trying
to be the first to develop true AIs may accept higher levels
of (existential) risk in order to accelerate their progress. On
the other hand, openness may reduce the probability of AI
benefits being monopolized by a small group and facilitate
counter measures.

Given the several factors and biases driving the strategic
safety-compliant behaviours and the dynamics of interac-
tions among development teams, the outcome of the race
(e.g. whether or not disaster occurs) is difficult to predict.
Very few efforts have been made in modelling AI disaster
and race dynamics among teams. In (Armstrong, Bostrom,
and Shulman 2016), the authors provide a game-theoretical
model of an AI race, under the assumption that the first AI
will be very powerful and transformative, so that each team
is encouraged to finish first and thus skimp on safety precau-
tions. This work, however, does not consider dynamical as-
pects of the race (e.g. how teams might adapt their strategies
over time), and which strategic behaviours emerge in differ-
ent race scenarios. Also, this work does not study how pos-
itive or negative incentives can be used to enhance teams’s
safety compliance.

To the contrary, there has been a significant body of com-
putational modelling research regarding game-theoretical
and EGT analyses of other disasters, such as climate change
and nuclear war (Santos and Pacheco 2011; Baliga and
Sjöström 2004). However, the AI race and its related risks
are quite unique, according to an analysis of 12 large global
catastrophic risks in (Pamlin and Armstrong 2015). Climate
change disaster analyses primarily focus on the unwilling-
ness of participants to take on themselves a personal cost for
a jointly desired collective target, and is conjoined to collec-
tive risk by all parties involved (Santos and Pacheco 2011).
In contrast, in AI racing, the winner(s) will derive signif-
icant relative advantage over others, risk being more indi-
vidualized. The AI race is also different from the nuclear
arms race, in that the former potentially poses greater effec-
tive achievement or otherwise risks to its creator, whereas
nuclear powers are generally not at direct risk originating
from their own arsenals (Armstrong, Bostrom, and Shulman
2016).

Finally, despite a number of proposals and debates on
how to prevent, regulate, or solve the AI race, there is sig-
nificant lack of rigorous modelling studies (Baum 2017;
Cave and Ó hÉigeartaigh 2018; Geist 2016; Shulman and
Armstrong 2009; Taddeo and Floridi 2018). Our proposed
research agenda aims to bridge this gap by providing ba-
sic models to systematically understand the dynamics of the
race and what strategic behaviours would likely emerge, in



different hypothetical scenarios and conditions of the race
concerning disaster risk, risk-perception behaviours, level
of information openness, number of racing teams, incen-
tives deployment, etc. These models can then be used and
perfected in discussions with stakeholders as well as policy
makers.

Reward and punishment
Punishment and reward are major forms of incentives,
widely adopted for enforcing cooperative behaviours among
self-interested agents and enacting norm compliance in both
social interactions and computerised systems (Sigmund,
Hauert, and Nowak 2001; Herrmann, Thöni, and Gächter
2008; Chen et al. 2015). Various forms of such incentives
have been studied, which can be roughly categorised into
peer and institutional ones.

To provide a peer incentive, agents pay a personal cost
to punish a violator (peer punishment) or reward a coopera-
tor (peer reward), after an interaction. As a result, the pun-
ished violator and rewarded cooperator incur a decrease or
increase, respectively, in their payoff. In the context of AI
race behaviours, examples of peer incentives use are when
teams refuse to support, and so do not share development
progress and knowledge with non-compliant teams, con-
sequently slowing down their development. They can also
arrange, for instance, cyber-attacks against non-compliant
teams, or even ascribe and spread their bad reputation, lead-
ing to those teams being unable to recruit and retain devel-
opers. On the other hand, highly compliant teams can be
rewarded, obtaining more support, such as knowledge and
experience sharing, and thus move faster along in the devel-
opment race.

In contrast to peer incentives, institutional incentives as-
sume instead the existence of an institution (with a budget)
to take care of the incentivising process (Chen et al. 2015).
Pool and coordinated group incentives, where agents can put
together a fund before an interaction occurs to provide in-
centives subsequent to the interaction, can be considered as a
first step towards institutionalisation of incentives (Sigmund
et al. 2010; Boyd, Gintis, and Bowles 2010). Examples of in-
stitutions providing incentives are modern courts and polic-
ing systems, as well as international organisations such as
the United Nations (UN), the European Union (EU), the
World Trade Organization (WTO) or the Organisation for
Economic Co-operation and Development (OECD). Setting-
up and maintaining institutions are costly, but the presence
of a powerful authority can effectively restrict individuals’
strategic options and provide stronger incentives (Hilbe et
al. 2014). In the context of an AI race, a centralised access
to AI-related knowledge, algorithms and tools, as in the EU
platform call (H2020-ICT-2018-2020) for instance, might
provide institutional incentives such as strong support and
punishment (e.g. allowing high levels of access or exclusion
from the centralised pool of AI knowledge).

For both peer and institutional incentives, the critical con-
ditions for cooperation to be achieved and sustained in evo-
lutionary models, as well as observed in lab experiments,
require that incentives ‘fit the crime’ (Sigmund et al. 2010;
Boyd, Gintis, and Bowles 2010). That is, they increase with

the severity of the violation or the merit of the cooperation.
Moreover, they need to be cost-effective, that is, the effect
of an incentive for its receiver should be sufficiently large
compared to the cost to the provider. Interestingly, for insti-
tutional incentives, the centralisation by which an institution
might observe a global population state enables more effi-
cient approaches. For instance, the ‘first carrot, then stick’
policy that switches the incentive from reward to punish-
ment whenever the frequency of cooperators in a popula-
tion exceeds a threshold, is highly efficient at establish-
ing full cooperation, better than either reward or punish-
ment alone [21]. Furthermore, local institutions that provide
incentives based on local neighbourhood properties (such
as its cooperativeness level) have proved more efficient
than large global governance overseeing the whole popu-
lation, in the context of climate change games and coop-
eration dilemmas (Vasconcelos, Santos, and Pacheco 2013;
Han et al. 2018). It may be that recourse to costly institu-
tional supervision is only enacted when spontaneous peer
cooperation becomes insufficient or inadequate.

Commitment modelling in dynamical systems
Commitment-based formalisms have been widely adopted
in Multi Agent Systems (MAS) as modelling and engineer-
ing tools (Singh 2013), with important applications in busi-
ness protocols, transactions, and software-oriented architec-
tures. Representing commitments that agents have to one
another specifies their expected interaction and correct be-
haviour (e.g. cooperation and norm compliance). The for-
malisms allow flexible capturing of contractual relationships
amongst the agents concerned and, as such, incentivise their
correct desirable behaviour. In a commitment-based MAS,
it is crucial to understand how an adopted commitment for-
malism, including its compliance incentivising approach, in-
fluences agents’ behaviours and the dynamics of their inter-
actions and, as a result, determines whether it can actually
help foster and secure substantial commitment compliance
and correct behaviour. This is typically studied in the lit-
erature on dynamical MAS, using methods from EGT. In
this dynamical context, agents interact and adapt their be-
haviours over time, e.g. via social learning (Sigmund 2010;
Sigmund et al. 2010; Han, Pereira, and Lenaerts 2016).

In fact, commitments have been shown to provide impor-
tant pathways to reaching mutual cooperation in the con-
text of social dilemma interactions (namely, in the Pris-
oners Dilemma (PD) (Han et al. 2013) and Public Goods
Game (PGG) (Han, Pereira, and Lenaerts 2016) settings),
within populations of self-interested agents. This dynami-
cal approach has provided important insights into the design
of commitment-based MAS, enabling identification of areas
of strengths and weaknesses of commitment-based mecha-
nisms. Consequentially, it is now possible to make specific
efforts to improve on concrete issues. This approach also
provides novel understanding towards the long quest for the
evolution of commitments and their roles in the evolution of
cooperation (Nesse 2001); with important practical ramifi-
cations for social and economic interactions, ranging from
personal relationships to business contracts and to interna-
tional agreements (Barrett 2016; Cherry and McEvoy 2013).



However, these modelling studies focus on standard co-
operation dilemmas settings, i.e. the PD and PGG (for both
one-shot and repeated interactions). When moving to AI
race interactions, several factors need to be taken into ac-
count, as described above, such as the risk of disaster, risk
perception and levels of openness. And the incentives need
to be accordingly designed to account for these new fac-
tors. For instance, by requiring that signatories to an AI
race treaty or agreement will commit to allow internationally
governed inspections concerning a defined minimal trans-
parency or the detection of secret of undertakings. Our study
may incorporate specific distinct punishments or rewards for
the case of violation or otherwise, or lack of due diligence, in
both such cases. Public and employee opinion and consumer
practice can also be mustered as another form of incentive.

Research Agenda: problems to be studied
The literature reviewed above clearly shows the importance
and gaps in modelling research to understand the dynamics
of interactions and emergent behaviours in an AI race, as
well as how incentive mechanisms might be used effectively
to promote desired behaviours, such as safety standards and
norms compliance from all parties involved in the race.

Our research agenda below aims to bridge this gap, and
the following three directions or parts are envisaged to
achieve that goal. The first one will develop baseline mod-
els for an AI race, on the basis of which the incentives for
influencing the race will be studied in subsequent projects.

Development of baseline AI race models
The first direction aims to develop new, baseline strategic
decision-making models that capture key factors relevant to
the competition and cooperation among AI teams, and that
investigate how they influence the outcome of the AI race.
Namely, we will develop EGT models to answer the follow-
ing questions:

• Which strategic behaviours emerge in the AI race?

• How does increasing the number of competing teams in-
fluence the evolutionary dynamics and outcome of the
race, namely in preventing disaster?

• How does the risk-perception probability of AI disaster
influence the race outcome?

• How does the heterogeneity of teams’ development ca-
pacities influence the race outcome and strategic be-
haviours?

We envisage multi-player game models of multiple stages
and/or repeated interactions, where a team might react to
the development of strategic behaviours of other teams. The
first teams to successfully develop AI will have signifi-
cant benefits over others, and even the ‘winner takes all’
scenario might come about. Although we focus on multi-
player games, for there are most likely multiple competing
AI teams, as the race evolves the game might end up at a
later stage with only a few or even two (strongest) teams.
Our analysis will start with pair-wise interactions, modelled
as two-player games, which will afterwards be generalised

to multi-team interactions, modelled as multiplayer games,
in order to provide a more comprehensive understanding.

We start with the most basic scenario where at each round
of the race a team or player is faced with two possible
choices: to follow the safety precaution (SAFE) or to ig-
nore this safety precaution (UNSAFE). Since it takes more
time and effort to comply with the precautionary require-
ments, playing SAFE is not only costlier, but also implies a
slower development speed, compared to playing UNSAFE.
As a generalisation of this binary-choice model we will con-
sider continuous games where a player can choose the level
of safety-precaution to adopt (i.e. SAFE and UNSAFE cor-
respond to the two extreme cases of complete precaution and
none at all, respectively).

Teams can collect benefits from their intermediate AI
products. However, differently from the standard repeated
games (Sigmund 2010) where all players collect benefit at
every round, we will need to consider a new time scale,
where different teams might collect benefits at different
speeds. That would mean a possible time delay in players’
decision-making, during the course of a repeated interac-
tion, because they might want to wait for the outcome of
a co-player’s decision to see what choice he/she has adopted
and/or will adopt in the next development round. Thus, a
player has to decide whether to make an immediate move
based on just present information (and hence be quicker to
collect the next benefit and move faster in the race) but at
the risk of making a worse choice, different from one that
would have been chosen had the player already known the
co-player’s decision. Moreover, since noise is a key fac-
tor driving the emergent strategic behaviours in the context
of repeated games (Sigmund 2010)—for instance when a
team might (non-deliberately) make a mistake in the safety
process, which might intensify the on-going race and trig-
ger long-term retaliation (Martinez-Vaquero et al. 2015)—
we will consider conflict resolution mechanisms such as
apology and forgiveness (Martinez-Vaquero et al. 2015;
McCullough 2008) for simmering down the noise effects on
the race.

There will be a perception probability (by teams) that an
AI disaster will occur wherein all teams lose the race, in-
curring a significant reduction in their payoff, and this risk-
probability will follow a certain probability distribution. It
is natural to assume that this probability increases with the
frequency with which teams violate the safety requirements
(i.e. play UNSAFE). Given the disaster probability, teams
might have a different perception of the risk. For example,
risk-taking (risk-avoiding) teams might underestimate (over-
estimate) this risk, leading to more (less) violations of the
safety requirements. As in the case of climate change games
(Santos and Pacheco 2011), the perception of risk is a key
factor driving the evolutionary outcome (whether or not dis-
aster happens). The main difference is that in climate change
models the risk (of failure in avoiding disaster) is collective,
whereas in the AI race risk is more individualised: should
an individual team ignore safety requirements too often, the
more likely their AI product will lead to disaster.

Additionally, assuming that teams have distinct develop-
ment capacities, i.e. that they might move at different speeds



in the race, how does that change the strategic behaviours in
the race by the different teams? Stronger teams might want
to spend more effort with safety to guarantee no disaster oc-
curs and ensure all the benefits from a powerful AI. On the
other hand, weaker teams might want to water down or cease
the safety efforts in order to catch up with the stronger teams.

Peer and group incentives for safety-compliance
This part of the agenda strives to investigate how peer in-
centives, such as peer punishment and reward, can be ef-
ficiently used, whether separately or jointly, for enhancing
safety-compliance behaviours in the AI race games devel-
oped in the first part. Namely, we will address the following
questions:

• What is the influence of using different types of peer in-
centives (separately or jointly), on safety-agreement com-
pliance in the two-team AI race game?

• Generalising to multi-team agreements, how can peer in-
centives be used efficiently, taking into account the level
of participation in the agreements as well as in a coordi-
nated manner (i.e. pool and coordinated incentives)?

• How should incentives be customised to account for the
level of risk (that an AI disaster will occur) as well as for
teams with different capabilities of development and of
commitment?

We shall start by extending the regimented agreement mod-
els for pair-wise and multiparty games, in both one-shot and
repeated games, introduced in previous works (Han et al.
2013; Han, Pereira, and Lenaerts 2016; Martinez-Vaquero
et al. 2015), where interactions occur in three (decision-
making) stages: (i) Before the interaction, agents choose
whether to propose an agreement; (ii) When receiving a pro-
posal, agents decide whether to accept or reject it; (iii) Dur-
ing the course of the (repeated) interaction, agents choose
whether to play SAFE or UNSAFE, depending on whether
the agreement was formed; and in the case of multiplayer
games, also on how many players committed to following
the safety precaution, because a minimum number of com-
mitting players may be required for an agreement to be
formed and put into effect.

The regimentation assumption entails that agents who
accept an agreement proposal yet dishonour it by defect-
ing during the interaction (i.e. fake committers (Han et al.
2013)), always honour and pay a compensation. Remov-
ing this assumption, another stage or decision point will be
added: (iv) After each round of the (repeated) interaction,
agents decide whether to use any type of peer incentives, de-
pending on the decisions made by co-players and by them-
selves in the previous three stages.

This new decision-making stage adds extra layers of com-
plexity, not just on how commitment behaviours are influ-
enced by incentives, but also on how different types of in-
centives interact. Namely, we need to distinguish between
incentives when an agreement is in place (i.e. incentives for
agreement fulfillers or for violators), and when agreement
is absent (i.e. incentives for mere cooperators or defectors).
Considering all strategic behaviours concerning how to use

incentives in co-presence in a population, we will examine
how these two incentive sorts should be treated differently
to foster safety-agreement compliance. Moreover, in order
to have a clear understanding of the strength and weakness
of each type of incentives, we will start from minimal mod-
els where only one type of (peer) incentive is present at
a time. Increasingly more complex models, which include
other types of incentive, will then be constructed and anal-
ysed to see how they interact and influence together the out-
come of the race. So doing will provide deeper systematic
understanding of how different types of incentives, whether
separately or jointly, can be used to achieve high levels of
safety compliance.

Rogue AI actors and teams might likely exercise anti-
social incentives or bullying (AI-Roadmap-Institute 2017a;
Herrmann, Thöni, and Gächter 2008). We will consider this
possibility in our models. Antisocial or bullying teams most
likely refuse to join a safety agreement and are detrimen-
tal to cooperation. However, setting up a pre-agreement can
provide an efficient solution. One can implement measures
to restrict access of non-participating (rogue) teams to AI
knowledge (Han, Pereira, and Lenaerts 2016); while mis-
behaving participating teams can be appropriately handled
through the agreement’s terms and conditions, both by coor-
dinated and institutional punishments (Sigmund et al. 2010;
Boyd, Gintis, and Bowles 2010). This relates to the AI race,
when a small number of major monopolizing actors or teams
need to be confronted by the collective as a whole. Further-
more, promoting guilt (Pereira et al. 2017) may be envisaged
as a further way to simmer down the AI race, viz. the recent
developments regarding Facebook policy change promises
and Cambridge Analytica’s declared bankruptcy, by appeal-
ing to public discomfort and the chastising of data bullies,
again, possibly with the help of crowd sourcing or inside
employees.

Our analysis will first examine two-player games since
they will permit us to focus on the effects of different types
of peer incentives. We will then extend the analysis to mul-
tiplayer games, which will include strategic behaviours con-
ditional on the level of participation of teams in a safety-
agreement; that is, how many teams agree to comply with
the safety requirements. Previous works have shown that in-
creasing the number of players in interaction significantly
magnifies the complexity of the evolutionary dynamics and
outcome. Firstly, since the number of behavioural equilibria
might significantly increase, it is important to study under
what conditions and how likely is it that desirable equilib-
ria can be reached; and, moreover, how different types of
incentives should be used, separately or jointly, to improve
the chance of reaching such desirable outcomes. Secondly,
it appears that collective decisions are more difficult to be
made for larger groups (Gokhale and Traulsen 2010). We
will study how increasing group size influences the probabil-
ity of safety-agreement formation and, once formed, which
are the players’ compliant behaviours. Indeed, as shown in
previous works for regimented commitments within group
interactions, it is crucial to closely monitor the minimum
level of participation when deciding whether a commitment
should be effectively formed in order to achieve an opti-



mal cooperation outcome (Han, Pereira, and Lenaerts 2016).
Such a minimum membership requirement can be found in
the creation of treaties that address international environ-
mental issues and is also important for AI regulation agree-
ments, as full consensus is rarely reached (as are the cases
for cyberspace agreements organized by the UN (Taddeo
and Floridi 2018)). Removing the regimentation, we will ex-
amine how different types and arrangements of incentives
influence the participation level and how this level should
be monitored to ensure safety-agreement compliance. Last
but not least, in multiplayer agreements a new possibility
arises where a group of players might coordinate to pro-
vide incentives with more substantial effects (e.g. gang up
on free-riders). We will start by applying the existing mod-
els of coordinated and pool incentives (Sigmund et al. 2010;
Boyd, Gintis, and Bowles 2010), where a group of incen-
tive providers can share the cost of providing incentives and
can decide to actually provide the incentives only if there is
sufficient interest in sharing the cost.

In both pair-wise and multiplayer games, we will closely
examine how incentives should be used differently, taking
into account the diverse risk levels or probabilities that an
AI disaster will occur. Does a high risk require stronger (or
less so) incentives to ensure a high level of safety compli-
ance? Also, considering that teams might have different ca-
pacities (for AI development), the question arises of how in-
centives should be used differently in light of a given ca-
pacity. For instance, stronger punishment might be required
against teams who frequently violate safety requirements,
especially if they are close to the finish line of the race. In
contradistinction, stronger support and reward may be en-
acted for highly compliant teams, to ensure they win the race
with a safe and powerful AI product.

Institutional incentives for safety-compliance
This final part of the agenda aims to examine how insti-
tutional incentives can be efficiently used for enhancing
safety-compliance behaviours in the AI race games, and how
they interact with peer incentives. The following questions
will be addressed:
• What is the influence of different institutional incentives,

separately or jointly, on safety-agreement compliance?
• How institutional incentives interact with peer incentives

and how these two types can be jointly used to provide an
efficient hybrid incentive strategy?

We will study institutional incentives in two scenarios: i) in
the absence and ii) in the presence, of peer incentives. The
former represents a fully centralised approach to regulating
the AI development race, while the latter is a hybrid of cen-
tralised and decentralised regulations. In this latter case we
explore different ways in which the two types of incentives
interact. For example, being autonomous entities, the teams
can decide by themselves the type of incentives used to en-
force the safety-agreement, i.e. a peer or institutional incen-
tive. It is natural to ask which option would emerge as the
preferred one in the population and when. This can be an-
swered by analysing EGT models in which all types of in-
centives are allowed to be adopted by agents in the popula-

tion. Since forming a regulating institution is usually costly
(Hilbe et al. 2014), we will identify when peer incentives
are sufficiently efficient so that the institutional setting-up
and maintenance cost can be avoided. This outcome is par-
ticularly important given the lack of attention so far to peer
incentives for behavioural regulation in normative MAS, and
moreover, to avoid (institutional) overregulation of AI devel-
opment from the start.

In addition, a distinctive feature of the institutional set-
ting is that the institution can have access to some global in-
formation, such as the current population composition. We
explore approaches exploiting this distinctiveness. We will
start by extending and generalising the ‘first carrot, then
stick’ policy. The challenge is that there will be multiple
types of strategic behaviours to incentivise, compared to
only two types as in the usual standard institutional incen-
tive models. At each time step, the institution needs to decide
whether to incentivise (subject to a given budget) one type
or even a subset of distinct types of incentive, depending on
their current frequencies in the population. This institutional
decision-making process is a complex multi-agent resource
allocation problem (Han et al. 2018), for which appropriate
resource allocation optimisation methods (e.g. from AI lit-
erature) can potentially be utilised.

Preliminary Results
In Supplementary Information, we described preliminary re-
sults for a two-team model of the AI race. The race is rep-
resented by a repeated game, consisting of a number of AI
development rounds, where in each round teams can choose
either to play SAFE or UNSAFE. The former choice is not
just costlier, but also takes longer (i.e. slower speed of de-
velopment). The team that wins the race will claim a sig-
nificant benefit, unless AI disaster occurs. Our analysis con-
siders a population of teams who can either play SAFE or
UNSAFE in all the development rounds, or they can choose
to adopt a reciprocal strategy (namely, conditionally SAFE).
The teams interact and can adapt their strategy through so-
cial learning (i.e. copying the strategy of those who are more
successful than them).

In general the analysis points to the direction that when
the benefit from winning the race is high, teams that always
choose UNSAFE dominate the population for a large range
of parameters’ values. This result shows that, in the context
of the AI race with repeated interactions, the strategic na-
ture and the outcome are different from those of standard
repeated games. In the AI race the rogue teams can move
faster in the race by ignoring safety precautions, and recip-
rocal strategies such as tit-for-tat still lose because of being
nice initially. This initial finding suggests that, to drive the
race in the more beneficial directions it is important to enact
measures that influence (prohibit or accelerate) the speed of
AI development of teams, since reciprocal behaviours might
not be sufficient to promote cooperative or safety behaviours
in this context.
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Supplementary Information – Preliminary
Results

A Preliminary Two-player Model
Let’s assume that in order to achieve AGI, a number of de-
velopment steps or rounds are required, where in each round
the development teams (or players) have two strategic op-
tions: to follow the safety precaution (SAFE) or to ignore
this safety precaution (UNSAFE). Since it takes more time
and effort to comply with the precautionary requirements,
playing SAFE is not only costlier, but also implies a slower
development speed, compared to playing UNSAFE. We as-
sume that to play SAFE players need to pay a cost c > 0,
while playing UNSAFE does not require them to pay any
cost (or some cost smaller than c, which can be normalised
to 0). Also, the development speed when playing UNSAFE
is s > 1 (steps towards the powerful AI) while the speed
when playing SAFE is normalised to 1.

Teams can collect benefits from their intermediate AI
products. Assuming a fixed benefit, b, from the AI market,
teams will share this benefit proportionally to their devel-
opment speed. Moreover, we assume that with some proba-
bility pfo those playing UNSAFE might be found out about
their unsafe development and their products won’t be used,
leading to 0 benefit. Thus we can write the payoff matrix as
follows (with respect to the row player)

Π =

 SAFE UNSAFE
SAFE −c + b

2
−c + (1− pfo) b

s+1
+ pfob

UNSAFE (1− pfo) sb
s+1

(1− p2
fo) b

2

!
.

For instance, when two SAFE players interact, each needs
to pay the cost c and they share the benefit b. When a SAFE
player interacts with an UNSAFE one the SAFE player pays
a cost c and obtains the full benefit b in case the UNSAFE
co-player is found out (with probability pfo), and obtains
a small part of the benefit b/(s + 1) otherwise (i.e. with
probability 1 − pfo). When playing with a SAFE player,
the UNSAFE does not have to pay any cost and obtains a
larger share bs/(s + 1) when not found out. Finally, when
an UNSAFE player interacts with another UNSAFE, it ob-
tains the shared benefit b/2 when both are not found out
and the full benefit b when it is not found out while the
co-player is found out, and 0 otherwise. The payoff is thus:
(1− pfo) [(1− pfo)(b/2) + pfob] = (1− p2

fo)
b
2 .

When a team achieves the objective of being the first to
have developed AGI after having moved W steps, they ob-
tain a benefit/prize B (which is shared among those who
reach the target at the same time). However, an AI disaster
might happen with some probability, which is assumed to
increase with the number of times the safety requirements
have been omitted by the winning team. When AI disaster
occurs, the winning team loses all its benefits 1. For simplic-
ity, we assume that when no safety precaution is followed

1In the current models we assume that an AI disaster might oc-
cur only when a true AI or AGI has been achieved, i.e. after the
W development steps have been completed. However, it might be
the case that some smaller scaled disasters might occur before that
milestone, especially when it is not clear whether and when AGI
will or has been be achieved, and there might even be false be-

at all, the risk probably is given by pr ∈ [0, 1], which is
linearly decreasing the fewer times the winning teams vio-
lates the safety precautions. For example, if the team always
abides to the precaution, then this probability is 0, while the
team that only follows it half of the time has a risk probabil-
ity of pr/2.

Consider now the following three strategies acting in re-
peated steps in the AI development process:

• AS (always complies with safety precaution)

• AU (never complies with safety precaution)

• CS (conditionally safe, plays SAFE in the first round and
then adopts the move its co-player used in the previous
round)

The payoff matrix defining averaged payoffs for the three
strategies assuming the first player wins after having moved
W steps (denoted p = 1− pr)

0@
AS AU CS

AS B
2W

+ Π11 Π12
B

2W
+ Π11

AU p
`

sB
W

+ Π21

´
p
`

sB
2W

+ Π22

´
ΠAU,CS

CS B
2W

+ Π11
s

W

`
Π12 + ( W

s
− 1)Π22

´
B

2W
+ Π11

1A,

where just for the purpose of presentation, we denote
ΠAU,CS = p

[
sB
W + s

W

(
Π21 + (Ws − 1)Π22

)]
.

We have made some initial analysis of the population dy-
namics in a population of the three strategies AS, AU and
CS, following EGT methods for finite populations (cf. Meth-
ods below), see Figure 1.

In general the analysis shows that when the benefit from
winning the race increases, AU wins for an increasing range
of risk probabilities. This result shows that, in the con-
text of iterative AI development steps, the outcome differs
from that observed in other repeated social dilemmas like
the prisoners dilemma. In the AI bidding war the rogue
teams playing AU can move faster in the race by ignor-
ing safety precautions, and reciprocal strategies such as CS
lose because of being nice initially (which is not the case in
standard repeated games). Thus, to drive the dynamics to-
wards the more beneficial directions (ensuring higher fre-
quency of safety-compliance) it is important to put new
mechanisms into place to control the speed of AI devel-
opment of teams, because reciprocal behaviour might not
be sufficient to promote cooperative or safety behaviours in
this context. Based on the described model, when an UN-
SAFE act is revealed, we can consider different approaches
to sanction the wrongdoing teams, e.g. peer versus institu-
tional punishments, whether in presence or in absence of
pre-commitments.

Note that in our model it is assumed that every team
can afford to choose either SAFE or UNSAFE, regardless
of how much funding they have for development. How-
ever, it could be the case that larger teams with a larger
budget could play SAFE with even a greater speed than
smaller teams choosing UNSAFE. As mentioned in the our

liefs regarding its presence. What is more, parties may release over
simplistic AI but deliberatively advertise more than it can achieve,
thereby leading to unforeseen usage disasters. We will analyse
these scenarios in future works.
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Figure 1: Frequency of each strategy in a population of AS, AU and CS, as a function of the risk probability pr (i.e. that
an AI disaster occurs when no safety precaution is considered). We plot for different alternative benefits in winning the AI race
(B = 100 and 10000) and for different values of s (the number of steps corresponding to a UNSAFE move; s = 1.5 in the first
row and s = 3 in the second row). In general, we observe that when the risk probability is small, AU is dominant. Also, the
larger B and s, AU dominates for a larger range. Parameters: c = 1, b = 10, W = 100, p2

fo = 0.1, β = 0.01, population size,
Z = 100.



Research Agenda, heterogeneity of teams’ development ca-
pacities might significantly influence the dynamics and out-
comes of the race. This issue will be incorporated into future
models.

Methods: Evolutionary Dynamics in Finite
Populations
Both the analytical and numerical results obtained here use
EGT methods for finite populations (Sigmund 2010). In
such a setting, players’ payoff represents their fitness or so-
cial success, and evolutionary dynamics is shaped by social
learning, whereby the most successful players will tend to be
imitated more often by the other players. Here social learn-
ing is modeled using the so-called pairwise comparison rule,
assuming that a player A with fitness fA adopts the strategy
of another playerB with fitness fB with probability given by
the Fermi function, PA,B =

(
1 + e−β(fB−fA)

)−1
, where β

conveniently describes the selection intensity. In Figure 1,
the long-term frequency of each strategy in a population of
several strategies in co-presence can be computed by calcu-
lating the stationary distribution of a Markov chain where
its states represent the strategies in the population. Details
of this calculation can be found e.g. in (Sigmund 2010;
Han et al. 2013).


	Introduction
	Background and Challenges
	AI race and modelling
	Reward and punishment
	Commitment modelling in dynamical systems

	Research Agenda: problems to be studied
	 Development of baseline AI race models
	Peer and group incentives for safety-compliance
	Institutional incentives for safety-compliance

	Preliminary Results
	Acknowledgements
	Supplementary Information -- Preliminary Results
	A Preliminary Two-player Model
	Methods: Evolutionary Dynamics in Finite Populations


