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Abstract
A central goal of algorithmic fairness is to reduce bias in au-
tomated decision making. An unavoidable tension exists be-
tween accuracy gains obtained by using sensitive information
(e.g., gender or ethnic group) as part of a statistical model,
and any commitment to protect these characteristics. Often,
due to biases present in the data, using the sensitive infor-
mation in the functional form of a classifier improves clas-
sification accuracy. In this paper we show how it is possible
to get the best of both worlds: optimize model accuracy and
fairness without explicitly using the sensitive feature in the
functional form of the model, thereby treating different indi-
viduals equally. Our method is based on two key ideas. On
the one hand, we propose to use Multitask Learning (MTL),
enhanced with fairness constraints, to jointly learn group spe-
cific classifiers that leverage information between sensitive
groups. On the other hand, since learning group specific mod-
els might not be permitted, we propose to first predict the
sensitive features by any learning method and then to use
the predicted sensitive feature to train MTL with fairness
constraints. This enables us to tackle fairness with a three-
pronged approach, that is, by increasing accuracy on each
group, enforcing measures of fairness during training, and
protecting sensitive information during testing. Experimen-
tal results on two real datasets support our proposal, showing
substantial improvements in both accuracy and fairness.

Introduction
In recent years there has been a lot of interest in the prob-
lem of enhancing learning methods with “fairness” require-
ments, see (Pleiss et al. 2017; Beutel et al. 2017; Hardt,
Price, and Srebro 2016; Feldman et al. 2015; Agarwal et
al. 2017; 2018; Woodworth et al. 2017; Zafar et al. 2017a;
Menon and Williamson 2018; Zafar et al. 2017c; Bechavod
and Ligett 2018; Zafar et al. 2017b; Kamishima, Akaho, and
Sakuma 2011; Kearns et al. 2017; Pérez-Suay et al. 2017;
Dwork et al. 2018; Berk et al. 2017; Alabi, Immorlica, and
Kalai 2018; Adebayo and Kagal 2016; Calmon et al. 2017;
Kamiran and Calders 2009; Zemel et al. 2013; Kamiran and
Calders 2012; 2010) and references therein. The general aim
is to ensure that sensitive information (e.g. knowledge about
gender or ethnic group of an individual) does not “unfairly”
influence the outcome of a learning algorithm. For example,
if the learning problem is to predict what salary a person
should earn based on her skills and previous employment
records, we would like to build a model which does not un-
fairly use additional sensitive information such as gender or
race.
Copyright © 2019, Association for the Advancement of Artificial
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A central question is how sensitive information should
be used during the training and testing phases of a model.
From a statistical perspective, sensitive information can im-
prove model performance: removing this information may
result in a less accurate model, without necessarily im-
proving the fairness of the solution, (Dwork et al. 2018;
Zafar et al. 2017a; Pedreshi, Ruggieri, and Turini 2008).
However, it is well known, that in some jurisdictions using
different classifiers, either explicitly or implicitly, for mem-
bers of different groups, may not be permitted, we refer to
the remark at page 3 in (Dwork et al. 2018) and references
therein. These imply that we can access the sensitive infor-
mation during the training phase of a model but not during
the testing phase. Our principal objective is then to optimize
model accuracy while still protecting sensitive information
in the data.

As a first step towards not discriminating minority groups
we focus on maximizing average accuracy with respect to
each group as opposed to maximizing the overall accu-
racy (Chouldechova 2017). For the underlying generic learn-
ing method, we consider both Single Task Learning (STL)
and Independent Task Learning (ITL). While the latter in-
dependently learns a different function for each group, the
former aims to learn a function that is common between all
groups. A well-known weakness of these methods is that
they tend to generalize poorly on smaller groups: while STL
may learn a model which better represents the largest group,
ITL may overfit minority groups (Baxter 2000). A common
approach to overcome such limitations is offered by Mul-
titask Learning (MTL), see (Baxter 2000; Caruana 1997;
Evgeniou and Pontil 2004; Bakker and Heskes 2003; Ar-
gyriou, Evgeniou, and Pontil 2008) and references therein.
This methodology leverages information between the groups
(tasks) to learn more accurate models. Surprisingly, to the
best of our knowledge, MTL has received little attention in
the algorithmic fairness domain. We are only aware of the
work (Dwork et al. 2018) which proposes to learn different
classifiers per group, combined with MTL to ameliorate the
issue of potentially having too little data on minority groups.

We build upon a particular instance of MTL which jointly
learns a shared model between the groups as well as a spe-
cific model per group. We show how fairness constraints,
measured with Equalized Odds or Equal Opportunities in-
troduced in (Hardt, Price, and Srebro 2016), can be built in
MTL directly during the training phase. This is in contrast
to other approaches which impose the fairness constraint as
a post-processing step (Pleiss et al. 2017; Beutel et al. 2017;
Hardt, Price, and Srebro 2016; Feldman et al. 2015) or by
modifying the data representation before employing stan-



dard machine learning methods (Adebayo and Kagal 2016;
Calmon et al. 2017; Kamiran and Calders 2009; Zemel et
al. 2013; Kamiran and Calders 2012; 2010). In many recent
works (Donini et al. 2018; Agarwal et al. 2017; 2018; Wood-
worth et al. 2017; Zafar et al. 2017a; Menon and Williamson
2018; Zafar et al. 2017c; Bechavod and Ligett 2018; Za-
far et al. 2017b; Kamishima, Akaho, and Sakuma 2011;
Kearns et al. 2017; Pérez-Suay et al. 2017; Dwork et al.
2018; Berk et al. 2017; Alabi, Immorlica, and Kalai 2018;
Dwork et al. 2018) it has been shown how to enforce these
constraints during the learning phase of a classifier. Here we
opt for the approach proposed in (Donini et al. 2018) since
it is convex, theoretically grounded, and performs favorably
against state-of-the-art alternatives. We present experiments
on two real-datasets which demonstrate that the shared clas-
sifier learned by MTL works better than STL and in turn
MTL’s group specific classifiers perform better than both
ITL as well as the shared MTL model. These results are in
line with previous studies on MTL, which suggest the ben-
efit offered by this methodology, see (Khosla et al. 2012;
Evgeniou and Pontil 2004; Donini et al. 2016) and refer-
ences therein. Moreover, we observe that the fairness con-
straint is effective in controlling the fairness measure.

Unfortunately, as remarked before, all the models which
employ the sensitive feature in the testing phase may not be
adoptable. Independent models cannot be employed since
we are using different classifiers for members of different
groups. Even the shared model may not be a feasible op-
tion, if the sensitive feature is used as a predictor (e.g. if
the model is linear, including the sensitive feature entails
using a group specific threshold). Therefore, the only fea-
sible1 option would be to learn a shared model based on the
non-sensitive features. This constraint may limit our ability
to learn classifiers of high generalization ability. In order to

Figure 1: Our proposal in a graphical abstract: rather than
using the sensitive feature s as a predictor we propose to
learn, with any learning algorithm, a function g, which cap-
tures the relationship between x and s, and then use g(x),
instead of s, to learn group specific models via MTL.

overcome such limitations, we propose to first use the non-
sensitive features to predict the value of the sensitive one
and then use the predicted sensitive feature to learn group
specific models via MTL. The proposal is depicted in the
graphical abstract of Figure 1. We experimentally demon-
strate that the proposed approach matches the classification
accuracy of the best performing model which uses the sen-
sitive information during testing, in addition to further im-
proving upon measures of fairness.

The rest of the paper is organized as follows. We firsr
present some preliminary definitions and notions concerning
the fair classification framework. Then we outline the central
problem that we face in the paper: exploiting the sensitive

1The sensitive feature may not be available in the testing phase
or it might not be possible to use it as a predictor in the model due
to legal requirements (Dwork et al. 2018).

feature while still treating different groups equally. We con-
tinue with the presentation of our proposal: predicting the
sensitive feature based on the non-sensitive ones and then
exploiting MTL with fairness constraints in order to increase
both accuracy and fairness measures (see Figure 1). Later we
test the proposal on two well known fairness related datasets
(Adult and COMPAS) demonstrating the potentiality of it.
Finally we conclude the paper with a brief discussion.

Preliminaries
We let D={(x1, s1, y1), . . . , (xn, sn, yn)} be a train-
ing set formed by n samples drawn independently from
an unknown probability distribution µ over X×S×Y ,
where Y={−1,+1} is the set of binary output labels,
S={1, . . . , k} represents group membership, and X is the
input space.

For every t∈S and operator �∈{−,+}, we define the
subset of training points with sensitive feature equal to
t as Dt={(x, s, y) : (x, s, y)∈D, s=t} and the sub-
set of training point negatively and positively labeled
with sensitive feature equal to t as D�t={(x, s, y) :
(x, s, y)∈D, s=t, y=�1}. We also let nt=|Dt| and for
�∈{−,+}, we let n�t=|D�t | .

Let us consider a function (or model) f : X×S→R cho-
sen from a set F of possible models. The error (risk) of f
is measured by a prescribed loss function ` : R×Y→R .
The average accuracy with respect to each group of a model
L(f), together with its empirical counterparts L̂(f), are de-
fined respectively as

L(f)=
1

k

∑
t∈S

Lt(f), Lt(f)=E [`(f(x), s, y)|s=t] , t∈S,

and

L̂(f)=
1

k

∑
t∈S

L̂t(f), L̂t(f)=1/nt

∑
(x,s,y)∈Dt

`(f(x, s), y), t∈S.

The fairness of the model can be measured w.r.t. many no-
tions of fairness as mentioned in the introduction. In this
work we choose to opt for the Equal Opportunity (EOp) and
the Equal Odds (EOd). For � ∈ {−,+}, the EOp� constraint
is defined as (Hardt, Price, and Srebro 2016)

P{f(x, s)>0|s=1, y=�1}=
. . .=P{f(x, s)>0|s=k, y=�1}, (1)

where � ∈ {−,+}. The EOd, instead is just the concurrent
verification of the EOp+ and EOp−, then ∀�∈{−,+}

P{f(x, s)>0 | s=1, y=�1}=
. . .=P{f(x, s)>0 | s=k, y=�1}. (2)

Since a model f , in general, will not be able to exactly ful-
fill the EOp+ with � ∈ {−,+} nor the EOd constraints we
define the Difference of EOp� (DEOp�) with � ∈ {−,+} as∑

t∈S

∣∣∣P{ŷ=y|s=t, y=�1}− 1
|S|
∑

t′∈SP{ŷ=y|s=t′, y=�1}
∣∣∣ ,

where ŷ = sign(f(x, s)). Finally, the Difference of EOd
(DEOd) is defined as

DEOd = (DEOp
+

+ DEOp
−
)/2.



Paradigm
A central problem, when learning a model f from data un-
der fairness requirements, is that using a different classifica-
tion method, or even using different weights on attributes
for members of different groups may not be allowed for
certain classification tasks (Dwork et al. 2018). In other
words, it may not be permitted to use the sensitive feature
explicitly or implicitly in the functional form of the model2.
This means that f should be a function of x only, that is,
f(x, s) = f(x).

For instance, if X=Rd and the sensitive feature is en-
coded with a one-hot encoding, and we use a linear classifier
then

f(x, s) = w · x+ bs, w∈Rd, bs∈R,
which is forbidden since the model involves a different bias
for each of the sensitive groups. The problem is even more
apparent when we use a different model per each group,
namely we set

f(x, s) = ws · x+ bs, ws∈Rd, bs∈R. (3)

Unfortunately, the above requirement can be highly con-
straining, resulting in a model with poor accuracy. In prac-
tice, due to bias present in the data, learning a model which
involves the sensitive feature in its functional form may sub-
stantially improve model accuracy.

Our proposal to overcome the above limitation is to use
the input x to predict the sensitive group s. That is, we learn
a function g : X→S , such that ŝ = g(x) is the predic-
tion of the sensitive feature of x. Therefore, our method re-
places the specific model f(x, s) with the composite model
h(x) ≡ f(x, g(x)), thereby treating different individuals
equally. Indeed if (x, t) and (x′, t′) are two instances, then
h(x) ≈ h(x′) provided x ≈ x′ irrespective of the values of
t and t′. Hence, we can freely use ŝ in the functional since,
during the testing phase, we do not require any knowledge of
s. As we shall see, on the one hand, in the regions of the in-
put space where the classifier g predicts well, this approach
allows us to exploit MTL to learn group specific models.
On the other hand, when the prediction error is high, this
approach acts as a randomization procedure3 which, as we
will empirically show, improves the fairness measure of the
overall model.

In this paper we investigate (i) the effect of having the
sensitive feature as part of the functional form of the model,
(ii) the effect of using a shared model between the groups
or a different model per group, (iii) the effect of learning a
shared model with STL or MTL and the effect of learning
group specific models with ITL or MTL, and (iv) the effect
of using the predicted sensitive feature instead of its actual
value inside the functional form of the model. Then we will

2Note that, for clarity, the above limitation is imposed only
when making predictions with f . During the training phase, the
sensitive information can and should be used to guide the choice of
model parameters.

3A random prediction ŝ of s is substituted in the functional form
of Eq. (3) which then randomly selects one of the group specific
models, transforming the function form in a randomized shared
model. Suppose we have many classifiers f(·, s) and a function
g which chooses which classifier to use. If one assumes that g(x)
is purely random, then f(·,x) is a randomized classifier. Therefore
if g has a high error rate, g is unable to predict the sensitive feature.
Consequently f(·,x) is just a shared classifier composed of many
functions chosen at random by g.

show that it is possible to take the best result of the different
approaches with substantial benefits in terms of both model
accuracy and fairness, while still treating different individu-
als equally.

Methodology
In this section, we describe our approach to learning fair and
accurate models and highlight the connection to MTL (Ev-
geniou and Pontil 2004). We consider the following func-
tional form

f(x, s) = w · φ(x, s), (x, s)∈X×S, (4)

where “ · ” is the inner product between two vectors in a
Hilbert space4 H, w ∈ H is a vector of parameters, and
φ : X × S → H is a prescribed feature mapping5.

We can then learn the parameter vector w by regular-
ized empirical risk minimization, using the square Euclidean
norm of the parameter vector ‖w‖2 as the regularizer. The
generality of this approach comes from the general form of
the feature mapping φ : X×S→H which may be implic-
itly defined by a kernel function, see e.g. (Shawe-Taylor and
Cristianini 2004; Smola and Schölkopf 2001) and references
therein. In the following, first we will briefly discuss three
approaches for learning the parameter vector which corre-
spond to the three methods investigated in this paper. Then,
we will explain how these methods can be enhanced with
fairness constraints.

Single Task Learning. As we argued above, we may not
be allowed to explicitly use the sensitive feature in the
functional form of the model. A simple approach to over-
come this problem, would be to train a shared model be-
tween the groups, that is, we choose φ(x, s)=ϕ(x) and
w=w0 in Eq. (4), where ϕ : X→H and w0∈H, so that
f(x, s)=w0 · ϕ(x) (a potentially unregularized threshold
may be built in the feature map to include a bias term). We
learn the model parameters by solving the Tikhonov regu-
larization problem6

minw0∈H L̂(w0) + ρ‖w0‖2, (5)

where ρ∈[0,∞) is a regularization parameter. This method,
which we will call Single Task Learning (STL), searches for
the linear separator which minimizes a trade-off between
the empirical average risk per group and the complexity
(smoothness) of the models.

As we shall see in our experiments below, STL per-
forms poorly, because it does not capture variance across
groups. A slight variation which may improve performance
is to introduce group specific thresholds. However, we re-
mark again that this approach may not be permitted. Specif-
ically, we choose φ(x, s)=(ϕ(x), es) and w=(w0,b)
where e1, . . . , eS are the canonical basis vectors in Rk and
b=(b1, . . . , bk)∈Rk, so that f(x, s) = w0 ·ϕ(x) + bs.

4For all intents and purposes, one may also assume throughout
that H = Rd, the standard d-dimensional vector space, for some
positive integer d.

5In practice, a bias term (threshold) can be added to f(x, s)
(which may depend on s) but to ease our presentation we do not
include it if not necessary.

6With a little abuse of notation we replace in the risk definitions
the function with its parameter vector.



Independent Task Learning. An approach to overcome
the potentially underfitting performance of STL is to learn
different models for each of the groups, we refer to this ap-
proach as independent task learning (ITL). It corresponds to
setting φ(x, s)=(0s−1,ϕ(x),0k−s) andw=(w1, . . . ,wk)
in Eq. (4), where ϕ : X→H and ws∈H ∀s∈S, so that
f(x, s)=ws ·ϕ(x). As before, the feature map may account
for a constant component to accommodate a threshold for
each of the groups. To find the vectors ws we solve k inde-
pendent Tikhonov regularization problems of the form

minws∈H L̂s(ws) + ρ‖ws‖2. (6)

Note that, similar to STL, if we substitute ŝ to s in this last
functional form then the method treats members of differ-
ent groups equally, since , as we mentioned before, learning
independent models may not be allowed. Furthermore, we
remark that from a statistical point of view, minority groups
(small sample sizes) will be prone to overfitting. Neverthe-
less, as we shall see, ITL works better than STL in our exper-
iments, suggesting that there is a lot of bias in the data. Still
one would expect that by leveraging similarities between the
groups ITL can be further improved. We discuss this next.

Multitask Learning. Let us now discuss the multitask
learning approach used in the paper, which is based on reg-
ularization around a common mean (Evgeniou and Pontil
2004). We choose φ(x, s)=(ϕ(x),0s−1,ϕ(x),0k−s) and
w=(w0,v1, . . . ,vk) in Eq. (4), where w0∈H and vs∈H
∀s∈S, so that f(x, s) = w0 ·ϕ(x)+vt ·ϕ(x). MTL jointly
learns a shared model w0 as well as task specific models
ws=w0+vs∈H ∀s∈S by encouraging the specific models
and the shared model to be close to each other. To this end,
we solve the following Tikhonov regularization problem

min
w0,w1,...,wS∈H

θL̂(w0)+(1−θ) 1k
∑k

s=1 L̂s(ws)

+ρ
[
λ‖w0‖2+(1−λ) 1k

∑k
s=1 ‖ws −w0‖2

]
, (7)

where the parameter λ∈[0, 1] forces the dependency be-
tween shared and specific models and the parameter θ∈[0, 1]
captures the relative importance of the loss of the shared
model and the group-specific models. This MTL approach
is general enough to include STL and ITL, which are recov-
ered by setting λ=θ=1 and λ=θ=0, respectively. Similar to
STL and ITL, regularized group specific thresholds could be
added in the shared model and in the group specific models.

Again, note that the group specific models trained by
MTL may not be permitted. Likewise the shared model
trained by MTL may not be permitted if we include the sen-
sitive variable to the input. However if the sensitive variable
is predicted from an external classifier and then MTL re-
trained with the predicted values, then this model treats dif-
ferent groups equally (see Figure 1).

Adding Fairness Constraints
Note that both STL, ITL and MTL problems are convex
provided the the loss function used to measure the empir-
ical errors L̂ and L̂s in Eqns. (5), (6), and (7) are con-
vex. Since we are dealing with binary classification prob-
lems, we will use the hinge loss (see e.g. (Shalev-Shwartz
and Ben-David 2014)), which is defined as `(f(x, s), y) =
max

(
0, 1−yf(x, s)

)
.

In many recent papers (Pleiss et al. 2017; Beutel et al.
2017; Hardt, Price, and Srebro 2016; Feldman et al. 2015;

Agarwal et al. 2017; 2018; Woodworth et al. 2017; Za-
far et al. 2017a; Menon and Williamson 2018; Zafar et
al. 2017c; Bechavod and Ligett 2018; Zafar et al. 2017b;
Kamishima, Akaho, and Sakuma 2011; Kearns et al. 2017;
Pérez-Suay et al. 2017; Dwork et al. 2018; Berk et al. 2017;
Alabi, Immorlica, and Kalai 2018; Adebayo and Kagal
2016; Calmon et al. 2017; Kamiran and Calders 2009;
Zemel et al. 2013; Kamiran and Calders 2012; 2010; Donini
et al. 2018) it has been shown how to enforce EOp� con-
straints for �∈{−,+}, during the learning phase of the
model f∈F . Here we build upon the approach proposed
in (Donini et al. 2018) since it is convex, theoretically
grounded, and showed to perform favorably against state-
of-the-art alternatives. To this end, we first observe that

P{f(x, s) > 0 | s = t, y = �1}
= 1−E {`h(f(x, s), y) | s = t, y = �1}
= 1−Lt(f), t∈S, (8)

where `h(f(x, s), y)=[yf(x, s)≤0] is the hard loss func-
tion. Then, by substituting Eq. (8) in Eqs. (1) and (2), replac-
ing the deterministic quantities with their empirical counter-
part, and by approximating the hard loss function `h with
the linear one `l=(1−yf(x, s))/2 we have that the convex
EOp� constraints with � ∈ {−,+} is defined as follows

1
n�1

∑
(x,s,y)∈D�1

f(x, s)=. . .= 1
n�k

∑
(x,s,y)∈D�k

f(x, s), (9)

while for the EOd we just have to enforce both the EOp+
and EOp− constraints.

In order to plug the constraint of Eq. (9) inside STL, ITL
and MTL we first define the quantities

u�t = 1
n�t

∑
(x,s)∈D�t

ϕ(x), t∈S, �∈{−,+}. (10)

It is then straightforward to show that if we wish to enforce
the EOp� constraint onto the shared model one has to add
these (k−1) constraints to the STL and MTL

w0 · (u�1 − u�2) = 0 ∧ . . . ∧ w0 · (u�1 − u�k) = 0. (11)

We remark again that for the EOd constraints we just have
to insert EOp+ ∧ EOp− which means 2(k−1) constraints.

If, instead, we want to enforce the EOp� constraint onto
group specific models we have to add these (k−1) con-
straints to the MTL and ITL

w1 · u�1 = w2 · u�2 ∧ . . . ∧ w1 · u�1 = wk · u�k, (12)

while for the EOd we just have to insert EOp+ ∧ EOp−.
Al last we note that by the representer theorem, as shown

in (Donini et al. 2018), it is straightforward to derive the
kernelized version of the fair STL, ITL, and MTL convex
problems which can be solved with any solver, in our case
CPLEX (IBM 2018).

Experiments
The aim of the experiments is to address the questions raised
before. Namely, we wish to: (a) study the effect of using the
sensitive feature as a way to bias the decision of a common
model or to learn group specific models, (b) show the ad-
vantage of training either the shared or group specific mod-
els via MTL, and (c) show that MTL can be effectively used
even when the sensitive feature is not available during test-
ing by predicting the sensitive feature based on the non-
sensitive ones.



Datasets and Setting
We employed the Adult dataset from the UCI repository7

and the Correctional Offender Management Profilingfor Al-
ternative Sanctions (COMPAS) dataset8.

The Adult dataset contains 14 features concerning demo-
graphic characteristics of 45222 instances (32561 for train-
ing and 12661 for testing), 2 features, Gender (G) and Race
(R), can be considered sensitive. The task is to predict if a
person has an income per year that is more (or less) than
50, 000$. Some statistics of the adult dataset with reference
to the sensitive features are reported in Table 7 in the ap-
pendix.

The COMPAS dataset is constructed by the commercial
algorithm COMPAS, which is used by judges and parole
officers for scoring criminal defendants likelihood of reof-
fending (recidivism). It has been shown that the algorithm
is biased in favor of white defendants based on a 2-years
follow up study. This dataset contains variables used by the
COMPAS algorithm in scoring defendants, along with their
outcomes within two years of the decision, for over 10000
criminal defendants in Broward County, Florida. In the orig-
inal data, 3 subsets are provided. We concentrate on the one
that includes only violent recividism. Table 7, reports the
statistics with reference to the sensitive features.

In all the experiments, we compare STL, ITL, and MTL
in different settings. Specifically we test each method in the
following cases: when the models use the sensitive feature
(S=1) or not (S=0), when the fairness constraint is active
(F=1) or not (F=0), when we consider the group specific
models (D=1) or the shared model between groups (D=0),
and when we use the true sensitive feature (P=1) or the pre-
dicted one (P=0). Note that when D=0 we can only com-
pare STL with MTL, since only these two models produce
a shared model between the groups, and furthermore, when
D=1 we can only compare ITL with MTL, since these pro-
duce group specific models.

We collect statistics concerning the classification aver-
age accuracy per group in percentage (ACC) on the test set,
difference of equal opportunities on both the positive and
negative class (denoted as DEO+ and DEO−, respectively),
and the difference of equalized odds (DEOd) of the selected
model - see the preliminaries for a definition of these quan-
tities.

We selected the best hyperparameters9 by the two
steps 10-fold cross validation (CV) procedure described
in (Donini et al. 2018). In the first step, the value of the
hyperparameters with highest accuracy is identified. In the
second step, we shortlist all the hyperparameters with accu-
racy close to the best one (in our case, above 97% of the best
accuracy). Finally, from this list, we select the hyperparam-
eters with the lowest fairness measure. This validation pro-
cedure, ensures that fairness cannot be achieved by a mere
modification of hyperparameter selection procedure.

Results
The results for all possible combinations described above,
are reported in the appendix.

7archive.ics.uci.edu/ml/datasets/adult
8github.com/propublica/compas-analysis
9The ranges of hyperparameters used in the validation proce-

dure of STL, MTL, and ITL are ρ∈{10−6.0, 10−5.5, . . . , 10+6.0}
and λ, θ∈{0, 2−15, 2−14, . . . , 2−1, 1−2−2, . . . , 1−2−15, 1}.

Table 1 presents the performance of the shared model
trained with STL or MTL, with or without the sensitive fea-
ture as a predictor, and with or without the fairness con-
straint. From Table 1 it is possible to see that MTL reaches
higher accuracies compared to STL while the fairness mea-
sure is mostly comparable, this means that there is a relation
between the tasks which can be captured with MTL. This
hypothesis is also supported by the results of Figure 2 in
the appendix, in which we check how the accuracy and fair-
ness, as measured with the EOd, varies by varying λ. Fig-
ure 2 shows that there are commonalities between the groups
which increase by increasing the number of groups: the op-
timal parameter λ it is smaller than one when we consider
the shared model (D=0) and it is larger than zeros when we
consider group specific models (D=1). Moreover, the fair-
ness constraint has a negative impact on the accuracy (less
strong for MTL) whilst having a highly positive impact on
fairness. Having the sensitive feature as a predictor increases
accuracy, but decreases fairness measure, as expected.

Table 2 reports the case when the group specific models
are trained with ITL or MTL, the same setting as Table 1.
MTL notably improves both accuracy and fairness. The fair-
ness constraints do not affect the accuracy too much, while
giving remarkable improvements in fairness. ITL and MTL
are not affected by not including or including the sensitive
feature predictor, as expected from the theory given that the
models already have already different biases. Table 3 reports
a comparison between STL, ITL, and MTL on the Adult
dataset, showing the accuracy on each group for the differ-
ent models for the case that P=0, F=0, and S=0. These
results clearly demonstrate that STL and ITL tend to gen-
eralize poorly on smaller groups, whereas MTL generalizes
better. Results on COMPAS datasets are analogous.

Table 5 reports the comparison between the most accu-
rate, fair and legal10 model (the shared model trained with
MTL, with fairness constraint, and no sensitive feature in the
predictors) and the most accurate, fair and illegal model (the
group specific models trained with MTL, with fairness con-
straint, the sensitive feature used as predictor). From the ta-
ble one can note that the illegal model remarkably improves
over the legal one in terms of accuracy and in some cases it
is even better than the legal one in terms of fairness. Based
on the result of Table 5 we would like to be able to use the
’illegal’ model’. In order to do so make use of the trick de-
scribed in the previous sections, namely we use the predicted
sensitive feature based on the non-sensitive features, instead
of the true one. For this purpose we used a Random Forests
model (Breiman 2001) where we weighted the errors dif-
ferently based on the group membership. Table 8 in the ap-
pendix reports the confusion matrices computed on the test
set.

Finally, in Table 6 we report a comparison between the
best illegal model and the same model, but for which uses
we used the predicted sensitive feature, instead of the true
one, both in training and in testing. Notably, Table 6 shows
that using the predicted sensitive feature in place of the true
one preserves the accuracy of the learned model, but with a
notable improvement in fairness. In attempt to explain this
phenomena, in Table 4 we report the average group accu-
racy for predicting the sensitive features gender and race, as
a function of the distance from the group specific models
separators trained with MTL on the Adult dataset. Table 4

10From now, for sake of simplicity, we use the word illegal (le-
gal) to define a model which uses (not-uses), either implicitly or
explicitly, the sensitive feature as part of its functional form.



Adult Dataset COMPAS Dataset
− 0−− STL MTL STL MTL STL MTL STL MTL STL MTL STL MTL− 1−− ITL ITL ITL ITL ITL ITL
P D F S ACC DEOp+ ACC DEOp+ ACC DEOp− ACC DEOp− ACC DEOd ACC DEOd ACC DEOp+ ACC DEOp+ ACC DEOp− ACC DEOp− ACC DEOd ACC DEOd

G
0 0 0 0 80.2 0.11 83.4 0.13 80.4 0.09 84.3 0.12 80.3 0.10 83.6 0.13 76.1 0.15 78.1 0.12 76.3 0.14 78.0 0.11 76.2 0.13 77.3 0.10
0 0 1 0 75.7 0.03 81.8 0.06 75.8 0.02 82.7 0.05 75.7 0.03 82.0 0.06 71.5 0.03 76.5 0.03 71.7 0.03 76.4 0.03 71.6 0.03 75.7 0.03
0 0 1 1 78.6 0.06 82.4 0.04 78.8 0.05 83.3 0.04 78.7 0.05 82.6 0.04 74.4 0.05 77.4 0.05 74.6 0.05 77.3 0.04 74.5 0.05 76.6 0.04

R
0 0 0 0 80.3 0.08 84.2 0.07 80.5 0.07 85.1 0.06 80.4 0.08 84.4 0.07 80.2 0.09 84.2 0.08 80.4 0.08 85.1 0.07 80.3 0.09 84.4 0.08
0 0 1 0 75.3 0.02 82.6 0.01 75.5 0.02 83.5 0.01 75.4 0.02 82.8 0.01 75.5 0.04 82.4 0.03 75.7 0.04 83.3 0.03 75.6 0.04 82.6 0.03
0 0 1 1 78.4 0.03 83.4 0.03 78.6 0.03 84.3 0.02 78.5 0.03 83.6 0.03 78.5 0.05 83.5 0.02 78.7 0.04 84.4 0.02 78.6 0.05 83.7 0.02

G+R
0 0 0 0 80.2 0.16 84.6 0.14 80.4 0.14 85.3 0.14 80.3 0.15 84.9 0.14 80.2 0.16 84.8 0.14 80.4 0.14 85.5 0.14 80.3 0.15 85.1 0.14
0 0 1 0 75.2 0.05 83.2 0.04 75.3 0.04 83.9 0.04 75.3 0.05 83.5 0.04 75.3 0.05 83.1 0.05 75.5 0.04 83.8 0.05 75.4 0.05 83.4 0.05
0 0 1 1 78.5 0.05 83.9 0.05 78.7 0.04 84.6 0.05 78.6 0.05 84.2 0.05 78.6 0.06 84.1 0.04 78.8 0.05 84.7 0.04 78.7 0.06 84.3 0.04

Table 1: Shared model trained with STL and MTL with or without sensitive feature as predictor and/or fairness constraint.

Adult Dataset COMPAS Dataset
− 0−− STL MTL STL MTL STL MTL STL MTL STL MTL STL MTL− 1−− ITL ITL ITL ITL ITL ITL
P D F S ACC DEOp+ ACC DEOp+ ACC DEOp− ACC DEOp− ACC DEOd ACC DEOd ACC DEOp+ ACC DEOp+ ACC DEOp− ACC DEOp− ACC DEOd ACC DEOd

G
0 1 0 0 74.5 0.18 90.0 0.14 74.7 0.15 91.0 0.13 74.6 0.17 90.2 0.14 70.7 0.19 84.5 0.15 70.9 0.17 84.4 0.14 70.8 0.16 83.6 0.13
0 1 1 0 69.7 0.08 88.3 0.04 69.9 0.07 89.2 0.04 69.8 0.08 88.5 0.04 66.1 0.08 83.0 0.04 66.3 0.08 82.8 0.04 66.2 0.07 82.1 0.04
0 1 1 1 69.7 0.08 88.1 0.03 69.9 0.07 89.1 0.03 69.8 0.08 88.3 0.03 66.1 0.09 82.9 0.07 66.3 0.08 82.8 0.06 66.2 0.08 82.1 0.06

R
0 1 0 0 67.4 0.13 91.8 0.10 67.6 0.11 92.8 0.08 67.5 0.13 92.0 0.10 67.3 0.12 91.7 0.08 67.5 0.11 92.7 0.07 67.4 0.12 92.0 0.08
0 1 1 0 62.5 0.05 90.0 0.03 62.7 0.05 90.9 0.03 62.6 0.05 90.2 0.03 62.4 0.07 90.1 0.02 62.6 0.06 91.0 0.02 62.5 0.07 90.3 0.02
0 1 1 1 62.6 0.06 90.4 0.03 62.7 0.05 91.3 0.03 62.6 0.06 90.6 0.03 62.4 0.07 90.0 0.03 62.5 0.07 91.0 0.03 62.4 0.07 90.2 0.03

G+R
0 1 0 0 64.0 0.23 91.5 0.15 64.2 0.20 92.2 0.15 64.1 0.22 91.8 0.15 64.2 0.24 91.4 0.16 64.3 0.21 92.2 0.16 64.3 0.22 91.7 0.16
0 1 1 0 59.3 0.14 89.8 0.05 59.4 0.12 90.6 0.05 59.3 0.13 90.1 0.05 59.2 0.13 90.1 0.05 59.4 0.11 90.8 0.05 59.3 0.12 90.4 0.05
0 1 1 1 59.2 0.13 90.0 0.05 59.4 0.11 90.8 0.05 59.3 0.12 90.3 0.05 59.4 0.13 89.9 0.05 59.5 0.11 90.7 0.05 59.5 0.12 90.3 0.05

Table 2: Group specific models with ITL and MTL with or without sensitive feature as predictor and/or fairness constraint.

D=0 D=1
Sens. Group STL MTL ITL MTL

G M 85.4 88.5 78.8 92.8
F 81.2 85.9 74.2 91.0

R

W 86.7 89.8 89.7 93.2
B 83.5 88.9 83.5 92.8
API 82.3 87.9 65.2 92.1
AIE 82.1 87.6 48.5 92.0
O 81.2 86.9 47.5 92.1

G+R

W&M 87.8 92.8 85.8 94.7
W&F 85.6 89.5 84.7 93.2
B&M 84.4 89.9 66.3 93.2
B&F 82.4 88.1 64.6 92.1
API&M 83.6 89.2 67.3 93.0
API&F 81.8 88.0 63.5 92.8
AIE&M 83.0 88.8 50.2 92.7
AIE&F 81.9 87.3 45.1 92.5
O&M 81.7 88.3 50.7 93.1
O&F 81.1 86.6 43.3 92.1

Table 3: Adult dataset: ACC of STL, ITL,
and MTL when P=0, F=0, and S=0.

Margin Distance
1/10 1 ∞

G 75.4 83.387.3
R 69.9 80.784.7

Table 4: Adult dataset: accuracy in % of
prediction based on the distance from the
MTL separator which uses the predicted
sensitive feature (see Table 6).

MTL MTL MTL
P D F S ACC DEOp+ ACC DEOp− ACC DEOd

Adult Dataset

G 0 0 10 81.8 0.06 82.7 0.05 82.0 0.06
0 1 11 88.1 0.03 89.1 0.03 88.3 0.03

R 0 0 10 82.6 0.01 83.5 0.01 82.8 0.01
0 1 11 90.4 0.03 91.3 0.03 90.6 0.03

G+R 0 0 10 83.2 0.04 83.9 0.04 83.5 0.04
0 1 11 90.0 0.05 90.8 0.05 90.3 0.05

COMPAS Dataset

G 0 0 10 76.5 0.03 76.4 0.03 75.7 0.03
0 1 11 82.9 0.07 82.8 0.06 82.1 0.06

R 0 0 10 82.4 0.03 83.3 0.03 82.6 0.03
0 1 11 90.0 0.03 91.0 0.03 90.2 0.03

G+R 0 0 10 83.1 0.05 83.8 0.05 83.4 0.05
0 1 11 89.9 0.05 90.7 0.05 90.3 0.05

Table 5: The most accurate, fair and
legal model (MTL shared model, with
fairness constraint, no sensitive fea-
ture in the predictor) and the most ac-
curate, fair and illegal model (MTL
group specific models, with fairness
constraint, sensitive feature exploited
as predictor).

MTL MTL MTL
P D F S ACC DEOp+ ACC DEOp− ACC DEOd

Adult Dataset

G 0 1 11 88.1 0.03 89.1 0.03 88.3 0.03
1 1 11 87.4 0.01 88.3 0.01 87.6 0.01

R 0 1 11 90.4 0.03 91.3 0.03 90.6 0.03
1 1 11 89.2 0.01 90.2 0.01 89.4 0.01

G+R 0 1 11 90.0 0.05 90.8 0.05 90.3 0.05
1 1 11 89.0 0.01 89.8 0.01 89.3 0.01

COMPAS Dataset

G 0 1 11 82.9 0.07 82.8 0.06 82.1 0.06
1 1 11 82.1 0.01 82.0 0.01 81.3 0.01

R 0 1 11 90.0 0.03 91.0 0.03 90.2 0.03
1 1 11 89.0 0.01 89.9 0.01 89.2 0.01

G+R 0 1 11 89.9 0.05 90.7 0.05 90.3 0.05
1 1 11 89.0 0.01 89.8 0.01 89.3 0.01

Table 6: Comparison between the
group specific models trained with
MTL, with fairness constraint, and
the true sensitive feature exploited as
a predictor, against the same model
when the predicted sensitive feature
exploited as predictor.

shows that the accuracy in predicting the sensitive feature
decreases as we get closer to the separator. This can be un-
derstood as allowing the group specific model to randomize
which specific classifier to use, reducing overall unfairness
of the decision. Results on COMPAS dataset are analogous.

Discussion
We have presented two novel, but related, ideas in this work.
Firstly, to resolve the tension between accuracy gains ob-
tained by using a sensitive feature as part of the model, and
the potential inapplicability of such an approach, we have
suggested to first predict the sensitive feature based on the
non-sensitive features, and then use the predicted value in
the functional form of a model, allowing to treat people be-
longing to different groups, but having similar non-sensitive

features, equally. Furthermore, we have demonstrated how
the predicted sensitive feature can then used in a fairness
constrained MTL framework. We confirmed the validity of
the above approach empirically, giving us substantial im-
provements in both accuracy and fairness, compared to STL
and ITL. We believe this to be a fruitful area of possible fu-
ture research. Of course, a non-linear extension of the above
framework would be interesting to study, although we did
not notice any substantial improvements on the Adult and
COMPAS datasets considered in this work. Moreover, it
would be interesting to see if the above framework can be
extended to include other fairness definitions, apart from the
EOp and EOd that we have tested. Finally, it would be valu-
able to provide theoretical conditions on the data distribution
for which our approach provably works.
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Appendix
Dataset Statistics
In Table 7 we reported the Adult and the COMPAS datasets statistics with reference to the sensitive features.

Adult dataset
Sens. Group %

G Male (M) 66.9
Female(F) 33.2

R

White (W) 85.5
Black (B) 9.6
Asian-Pac-Islander (API) 3.1
Amer-Indian-Eskimo (AIE) 1.0
Other (O) 0.8
W&M 58.8
W&F 26.7
B&M 4.9
B&F 4.7

G+R API&M 2.1
API&F 1.1
AIE&M 0.6
AIE&F 0.4
O&M 0.5
O&F 0.3

COMPAS dataset
Sens. Group %

G Female (F) 19.34
Male (M) 80.66

R

African-American (AA) 51.23
Asian (A) 0.44
Caucasian (C) 34.02
Hispanic (H) 8.83
Native American (NA) 0.25
Other (O) 5.23
Female African-American 9.04
Female Asian 0.03
Female Caucasian 7.86
Female Hispanic 1.48
Female Native American 0.06
Female Other 0.93

G+R Male African-American 42.20
Male Asian 0.45
Male Caucasian 26.16
Male Hispanic 7.40
Male Native American 0.19
Male Other 4.30

Table 7: Adult and COMPAS datasets: statistics with reference to the sensitive features.

Predicting the sentitive feature
Table 8 reports confusion matrices in percentage (true class in columns and predicted classes in rows) obtained by predicting
Gender and Race from the other non-sensitive features using Random Forests for both Adult and COMPAS datasets.

The effect of the hyperparameter λ
In Figure 2 we check how the accuracy and fairness, as measured with the EOd, varies with λ.

Complete Set of Results
In this section we report the complete set of results. The results for all the possible combinations described in the experimental
section, are reported in Table 9. In Figures 3, 4, and 5, we present a visualization of Table 9 for the Adult dataset (results are
analogous for the COMPAS one). Where both the error (i.e., 1-ACC), and the EOd are normalized to be between 0 and 1,
column-wise. The closer a point is to the origin, the better the result.

Adult dataset

G M F

M 58.2 3.8
F 8.7 29.4

Adult dataset

R W B API AIE O

W 78.5 1.7 0.5 0.2 0.1
B 4.6 7.8 0.1 0.0 0.0

API 0.5 0.0 0.8 0.0 0.0
AIE 1.5 0.1 0.0 2.6 0.0
O 0.4 0.0 0.0 0.0 0.7

COMPAS dataset

G M F

M 16.7 8.6
F 2.6 72.1

COMPAS dataset

R AA A C H NA O

AA 44.8 0.0 3.4 0.6 0.0 0.3
A 0.1 0.3 0.0 0.0 0.0 0.0
C 4.4 0.0 29.6 0.4 0.0 0.2
H 1.2 0.0 0.6 7.7 0.0 0.1

NA 0.0 0.0 0.0 0.0 0.2 0.0
O 0.7 0.0 0.4 0.1 0.0 4.6

Table 8: Adult (up) and COMPAS (down) datasets: confusion matrices in percentage (true class in columns and predicted
classes in rows) obtained by predicting Gender and Race from the other non-sensitive features using Random Forests.



Adult Dataset COMPAS Dataset
− 0−− STL MTL STL MTL STL MTL STL MTL STL MTL STL MTL− 1−− ITL ITL ITL ITL ITL ITL
P D F S ACC DEOp+ ACC DEOp+ ACC DEOp− ACC DEOp− ACC DEOd ACC DEOd ACC DEOp+ ACC DEOp+ ACC DEOp− ACC DEOp− ACC DEOd ACC DEOd

G

0 0 0 0 80.2 0.11 83.4 0.13 80.4 0.09 84.3 0.12 80.3 0.10 83.6 0.13 76.1 0.15 78.1 0.12 76.3 0.14 78.0 0.11 76.2 0.13 77.3 0.10
0 0 0 1 83.3 0.14 83.9 0.13 83.5 0.12 84.8 0.12 83.4 0.13 84.1 0.13 79.3 0.15 79.2 0.13 79.5 0.14 79.1 0.12 79.4 0.13 78.4 0.11
0 0 1 0 75.7 0.03 81.8 0.06 75.8 0.02 82.7 0.05 75.7 0.03 82.0 0.06 71.5 0.03 76.5 0.03 71.7 0.03 76.4 0.03 71.6 0.03 75.7 0.03
0 0 1 1 78.6 0.06 82.4 0.04 78.8 0.05 83.3 0.04 78.7 0.05 82.6 0.04 74.4 0.05 77.4 0.05 74.6 0.05 77.3 0.04 74.5 0.05 76.6 0.04
0 1 0 0 74.5 0.18 90.0 0.14 74.7 0.15 91.0 0.13 74.6 0.17 90.2 0.14 70.7 0.19 84.5 0.15 70.9 0.17 84.4 0.14 70.8 0.16 83.6 0.13
0 1 0 1 74.6 0.17 89.7 0.14 74.7 0.15 90.7 0.13 74.7 0.16 90.0 0.14 70.9 0.19 84.5 0.14 71.1 0.18 84.4 0.13 71.0 0.16 83.6 0.12
0 1 1 0 69.7 0.08 88.3 0.04 69.9 0.07 89.2 0.04 69.8 0.08 88.5 0.04 66.1 0.08 83.0 0.04 66.3 0.08 82.8 0.04 66.2 0.07 82.1 0.04
0 1 1 1 69.7 0.08 88.1 0.03 69.9 0.07 89.1 0.03 69.8 0.08 88.3 0.03 66.1 0.09 82.9 0.07 66.3 0.08 82.8 0.06 66.2 0.08 82.1 0.06
1 0 0 0 78.4 0.09 82.3 0.09 78.6 0.07 83.2 0.09 78.5 0.08 82.5 0.09 74.6 0.12 77.3 0.10 74.8 0.11 77.2 0.09 74.7 0.10 76.5 0.09
1 0 0 1 81.7 0.13 83.1 0.08 81.9 0.11 84.0 0.07 81.8 0.12 83.3 0.08 77.6 0.13 78.1 0.09 77.8 0.12 78.0 0.09 77.7 0.11 77.3 0.08
1 0 1 0 73.7 0.02 80.7 0.01 73.9 0.02 81.6 0.01 73.8 0.02 80.9 0.01 70.1 0.03 75.9 0.01 70.3 0.03 75.8 0.01 70.2 0.03 75.1 0.01
1 0 1 1 76.8 0.03 81.5 0.01 77.0 0.03 82.4 0.01 76.9 0.03 81.7 0.01 73.1 0.05 76.7 0.01 73.3 0.05 76.6 0.01 73.2 0.04 75.9 0.01
1 1 0 0 73.0 0.14 89.1 0.09 73.2 0.12 90.1 0.08 73.1 0.13 89.3 0.09 69.3 0.17 83.7 0.09 69.5 0.15 83.6 0.08 69.4 0.14 82.8 0.08
1 1 0 1 72.8 0.15 88.9 0.10 73.0 0.13 89.9 0.09 72.9 0.14 89.1 0.10 69.3 0.15 83.7 0.10 69.5 0.14 83.6 0.09 69.4 0.13 82.9 0.09
1 1 1 0 68.0 0.06 87.4 0.01 68.2 0.05 88.3 0.01 68.1 0.05 87.6 0.01 64.7 0.06 82.3 0.01 64.9 0.05 82.1 0.01 64.8 0.05 81.4 0.01
1 1 1 1 68.0 0.06 87.4 0.01 68.1 0.05 88.3 0.01 68.1 0.06 87.6 0.01 64.6 0.06 82.1 0.01 64.8 0.06 82.0 0.01 64.7 0.05 81.3 0.01

R

0 0 0 0 80.3 0.08 84.2 0.07 80.5 0.07 85.1 0.06 80.4 0.08 84.4 0.07 80.2 0.09 84.2 0.08 80.4 0.08 85.1 0.07 80.3 0.09 84.4 0.08
0 0 0 1 83.2 0.09 85.3 0.09 83.4 0.08 86.2 0.08 83.3 0.09 85.5 0.09 83.2 0.10 84.9 0.08 83.4 0.09 85.8 0.07 83.3 0.10 85.1 0.08
0 0 1 0 75.3 0.02 82.6 0.01 75.5 0.02 83.5 0.01 75.4 0.02 82.8 0.01 75.5 0.04 82.4 0.03 75.7 0.04 83.3 0.03 75.6 0.04 82.6 0.03
0 0 1 1 78.4 0.03 83.4 0.03 78.6 0.03 84.3 0.02 78.5 0.03 83.6 0.03 78.5 0.05 83.5 0.02 78.7 0.04 84.4 0.02 78.6 0.05 83.7 0.02
0 1 0 0 67.4 0.13 91.8 0.10 67.6 0.11 92.8 0.08 67.5 0.13 92.0 0.10 67.3 0.12 91.7 0.08 67.5 0.11 92.7 0.07 67.4 0.12 92.0 0.08
0 1 0 1 67.2 0.13 91.8 0.08 67.4 0.12 92.8 0.07 67.3 0.13 92.1 0.08 67.4 0.13 91.8 0.09 67.5 0.11 92.8 0.08 67.4 0.13 92.0 0.09
0 1 1 0 62.5 0.05 90.0 0.03 62.7 0.05 90.9 0.03 62.6 0.05 90.2 0.03 62.4 0.07 90.1 0.02 62.6 0.06 91.0 0.02 62.5 0.07 90.3 0.02
0 1 1 1 62.6 0.06 90.4 0.03 62.7 0.05 91.3 0.03 62.6 0.06 90.6 0.03 62.4 0.07 90.0 0.03 62.5 0.07 91.0 0.03 62.4 0.07 90.2 0.03
1 0 0 0 78.5 0.07 83.2 0.04 78.7 0.06 84.1 0.04 78.6 0.07 83.4 0.04 78.4 0.08 83.3 0.06 78.6 0.07 84.2 0.05 78.5 0.08 83.5 0.06
1 0 0 1 81.8 0.09 84.1 0.06 82.0 0.08 85.0 0.05 81.9 0.09 84.3 0.06 81.7 0.09 84.4 0.07 81.9 0.08 85.3 0.06 81.8 0.09 84.6 0.07
1 0 1 0 73.7 0.02 81.6 0.01 73.9 0.02 82.5 0.01 73.8 0.02 81.8 0.01 73.7 0.01 81.5 0.01 73.9 0.01 82.4 0.01 73.8 0.01 81.7 0.01
1 0 1 1 77.1 0.01 82.5 0.01 77.3 0.01 83.4 0.01 77.2 0.01 82.7 0.01 77.0 0.02 82.4 0.01 77.2 0.01 83.2 0.01 77.1 0.02 82.5 0.01
1 1 0 0 65.8 0.12 90.8 0.06 66.0 0.11 91.8 0.05 65.9 0.12 91.0 0.06 65.5 0.12 90.8 0.05 65.7 0.11 91.8 0.05 65.6 0.12 91.0 0.05
1 1 0 1 65.8 0.11 90.7 0.05 66.0 0.10 91.7 0.04 65.9 0.11 91.0 0.05 65.7 0.12 90.8 0.07 65.8 0.11 91.7 0.07 65.7 0.12 91.0 0.07
1 1 1 0 61.2 0.06 89.3 0.01 61.3 0.05 90.3 0.01 61.2 0.06 89.5 0.01 60.8 0.05 89.2 0.01 61.0 0.05 90.1 0.01 60.9 0.05 89.4 0.01
1 1 1 1 60.8 0.06 89.2 0.01 61.0 0.05 90.2 0.01 60.9 0.06 89.4 0.01 60.9 0.04 89.0 0.01 61.1 0.04 89.9 0.01 61.0 0.04 89.2 0.01

G+R

0 0 0 0 80.2 0.16 84.6 0.14 80.4 0.14 85.3 0.14 80.3 0.15 84.9 0.14 80.2 0.16 84.8 0.14 80.4 0.14 85.5 0.14 80.3 0.15 85.1 0.14
0 0 0 1 83.1 0.18 85.7 0.16 83.4 0.16 86.4 0.16 83.3 0.17 86.0 0.16 83.3 0.18 85.5 0.16 83.5 0.15 86.2 0.16 83.4 0.16 85.8 0.16
0 0 1 0 75.2 0.05 83.2 0.04 75.3 0.04 83.9 0.04 75.3 0.05 83.5 0.04 75.3 0.05 83.1 0.05 75.5 0.04 83.8 0.05 75.4 0.05 83.4 0.05
0 0 1 1 78.5 0.05 83.9 0.05 78.7 0.04 84.6 0.05 78.6 0.05 84.2 0.05 78.6 0.06 84.1 0.04 78.8 0.05 84.7 0.04 78.7 0.06 84.3 0.04
0 1 0 0 64.0 0.23 91.5 0.15 64.2 0.20 92.2 0.15 64.1 0.22 91.8 0.15 64.2 0.24 91.4 0.16 64.3 0.21 92.2 0.16 64.3 0.22 91.7 0.16
0 1 0 1 63.9 0.24 91.7 0.16 64.0 0.21 92.4 0.16 64.0 0.23 92.0 0.16 64.1 0.23 91.5 0.15 64.3 0.20 92.2 0.15 64.2 0.22 91.8 0.15
0 1 1 0 59.3 0.14 89.8 0.05 59.4 0.12 90.6 0.05 59.3 0.13 90.1 0.05 59.2 0.13 90.1 0.05 59.4 0.11 90.8 0.05 59.3 0.12 90.4 0.05
0 1 1 1 59.2 0.13 90.0 0.05 59.4 0.11 90.8 0.05 59.3 0.12 90.3 0.05 59.4 0.13 89.9 0.05 59.5 0.11 90.7 0.05 59.5 0.12 90.3 0.05
1 0 0 0 78.5 0.13 83.9 0.12 78.7 0.11 84.6 0.12 78.6 0.12 84.2 0.12 78.4 0.13 83.8 0.09 78.6 0.12 84.5 0.09 78.5 0.13 84.1 0.09
1 0 0 1 81.9 0.14 84.8 0.11 82.1 0.12 85.5 0.11 82.0 0.13 85.1 0.11 81.7 0.15 84.7 0.11 81.9 0.13 85.4 0.11 81.8 0.14 85.0 0.11
1 0 1 0 73.7 0.01 82.3 0.01 73.9 0.01 83.0 0.01 73.8 0.01 82.6 0.01 73.6 0.02 82.5 0.01 73.8 0.02 83.1 0.01 73.7 0.02 82.8 0.01
1 0 1 1 76.8 0.04 83.1 0.01 76.9 0.04 83.8 0.01 76.8 0.04 83.4 0.01 76.8 0.04 83.2 0.01 77.0 0.04 83.8 0.01 76.9 0.04 83.4 0.01
1 1 0 0 62.5 0.21 90.8 0.12 62.6 0.19 91.5 0.12 62.5 0.20 91.1 0.12 62.5 0.21 90.6 0.11 62.6 0.18 91.4 0.11 62.6 0.20 91.0 0.11
1 1 0 1 62.3 0.21 90.8 0.11 62.5 0.18 91.5 0.11 62.4 0.20 91.1 0.11 62.5 0.22 90.7 0.11 62.6 0.19 91.4 0.11 62.6 0.20 91.0 0.11
1 1 1 0 57.7 0.10 89.1 0.02 57.9 0.08 89.9 0.02 57.8 0.09 89.5 0.02 57.8 0.11 89.2 0.01 58.0 0.10 89.9 0.01 57.9 0.11 89.5 0.01
1 1 1 1 57.7 0.10 89.0 0.01 57.9 0.09 89.8 0.01 57.8 0.10 89.3 0.01 57.7 0.10 89.0 0.01 57.8 0.08 89.8 0.01 57.7 0.09 89.3 0.01

Table 9: Complete results set.
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Figure 2: Adult Dataset: ACC and EOd of MTL, when we fix θ and ρ to be the best values found during the validation procedure
and we vary λ with P=0, F=1, and S=0.



Figure 3: Adult dataset: complete results set for Gender (text close to the symbols in plot are P, D, F, and S).

Figure 4: Adult dataset: complete results set for Race (text close to the symbols in plot are P, D, F, and S).



Figure 5: Adult dataset: complete results set for Gender+Race (text close to the symbols in plot are P, D, F, and S).


