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Abstract 
The results of forensic DNA software systems are regularly 
introduced as compelling evidence in criminal trials, but re-
quests by defendants to evaluate how these results are gen-
erated are often denied.  Furthermore, there is mounting 
evidence of problems such as failures to disclose substantial 
changes in methodology to oversight bodies and substantial 
differences in the results generated by different software 
systems. In a society that purports to guarantee defendants 
the right to face their accusers and confront the evidence 
against them, what then is the role of black-box forensic 
software systems in moral decision making in criminal jus-
tice? In this paper, we examine the case of the Forensic Sta-
tistical Tool (FST), a forensic DNA system developed in 
2010 by New York City’s Office of Chief Medical Exam-
iner (OCME). For over 5 years, expert witness review re-
quested by defense teams was denied, even under protective 
order, while the system was used in over 1300 criminal 
cases. When the first expert review was finally permitted in 
2016, many problems were identified including a com-
pletely undisclosed function capable of dropping evidence 
that could be beneficial to the defense. Overall, the findings 
were so substantial that a motion to release both the review 
and the full source code of FST publicly was granted. In this 
paper, we present the first analysis of the impact of this un-
disclosed function. We quantify the impact of the change on 
over 400 samples from OCME’s own validation study and 
discuss the potential impact on individual defendants. Be-
yond this, we consider what changes in the criminal justice 
system could prevent problems like this from going unde-
tected and unresolved in the future. 

Introduction 
Increasingly big decisions about the lives of individuals are 
being made in a partnership between human decision mak-
ers and computer systems.  In high stakes areas like hiring, 
housing, credit and criminal justice, societal principles 
negotiated collectively over time could be undermined in 
the process of automation. For example, automated sys-
tems are used throughout the criminal justice system from 
investigation/policing decisions to pretrial decisions to 

decisions about evidence at trial to sentencing decisions to 
parole decisions. In this context, it is reasonable to ask 
what the impact of these automated systems is on widely 
accepted principles of criminal justice decision making 
such as the right to a public trial, the rights of defendants to 
review and confront the evidence against them and the 
right to equal justice under the law.  

In this paper, we focus on the Forensic Statistical Tool 
(FST), a forensic DNA system developed in 2010 by New 
York City’s Office of Chief Medical Examiner (OCME). 
We consider what types of oversight human decision mak-
ers were able to provide and what incentives were present 
for finding, fixing and disclosing bugs in the system. We 
propose a set of modifications to the holistic decision mak-
ing process to encourage bugs in forensic DNA systems 
like FST to be found and fixed.     

We conduct independent, third-party testing of FST, a 
step that we argue should be regularly performed on any 
software used in the criminal justice system. Using a col-
lection of over 400 mixed DNA samples of known compo-
sition from OCME’s own validation study, we evaluate the 
impact of an undisclosed data-dropping routine discovered 
by defense experts during the first source code review ever 
permitted. Expert witnesses identified the potential for this 
function to drop data that could be helpful to the defense, 
but this paper is the first study of the quantitative impact of 
the change. We also discuss the current hurdles to inde-
pendent, third-party testing of software used in the criminal 
justice system and make concrete suggestions for reducing 
those hurdles in the interest of accountability, transpar-
ency, and justice. 

Background 
Forensic DNA evidence has been an important part of 
criminal investigations for decades, but in recent years, 
probabilistic genotyping (PG) software has been intro-



duced to interpret evidence that is too complex for manual 
human analysis. Substantial concerns about the accuracy 
and reliability of this software have been raised by scien-
tists, journalists, and lawyers and there is substantial debate 
about its role in moral decision making in criminal justice. 

Many factors can complicate forensic DNA interpreta-
tion, making automated software analysis an attractive al-
ternative to human interpretation due to computational 
complexity and bias. Environmental factors can degrade 
DNA. Evidence samples may contain little DNA available 
for testing. DNA can be deposited on an item at different 
times. When processing samples, DNA from the sample 
can fail to be detected in whole or in part (drop-out), and 
random fragments of DNA can be introduced (drop-in).  

Models implemented in PG software can vary substan-
tially in how they accommodate – or don’t address – these 
issues. PG software also varies in how operator assump-
tions are taken into account, such as the number of con-
tributors to a sample – a value that can only be estimated 
when evaluating the evidence sample (e.g. how could one 
conclusively determine how many people might have han-
dled a gun) (Paoletti et al. 2005). Additionally, most PG 
software assumes that all contributors to a sample are 
completely unrelated and from the same ethnic group; an 
assumption that is unlikely to be true in many cases.   

Finally, there are substantial concerns that results of 
software used in the criminal justice system can themselves 
reflect inappropriate bias. Investigations into an assault by 
a group Hasidic men included concerns about whether PG 
software that assumes no relationships between contribu-
tors can accurately distinguish among members of a more 
genetically insular population (Kirchner 2017). For crimi-
nal justice software more broadly, ProPublica found that 
the COMPAS software used widely throughout the United 
States to estimate a defendants risk of committing another 
crime was more likely to falsely flag black defendants as 
future criminals, while white defendants were mislabeled 
as low risk more often than black defendants (Angwin et 
al. 2016)(Chouldechova 2017). For facial recognition 
software used in criminal justice applications, Buolamwini 
and Gebru identify substantially higher error rates for dark-
skinned women than for light-skinned men (Buolamwini 
and Gebru  2018). 

All of these factors should add up to a need for healthy 
skepticism about the design, development, and use of com-
plex software systems used in criminal justice, including 
PG software.  The field of forensic DNA analysis should 
require robust independent review of PG systems prior to 
their use in casework and promote investment in their it-
erative improvement. Both in research and in casework, an 
emphasis should be placed on comparisons between multi-
ple reasonable systems’ evaluation of the same input data 
(Garofano et al. 2015)(NIST 2017). However, this is not 
the current state of the field.  

Instead, these legitimate concerns have been further 
heightened by secrecy. Software vendors aggressively 
claim trade secret protection for their software. In many 
cases, developers have succeeded in resisting requests by 
defense attorneys to allow their own experts to review both 
the executable versions and source code of these systems, 
even under protective order (Tashea 2017).  That is an ex-
treme requirement of secrecy, especially in high-stakes 
criminal cases.  

Legal scholars and defense attorneys have argued that 
defendant rights to confront the evidence against them and 
to a public trial should outweigh the intellectual property 
interests of software vendors (Wexler 2018). Furthermore, 
it has been argued that software vendors already enjoy sub-
stantial commercial protection from a first-mover advan-
tage once the results of their product have been widely 
accepted in courtrooms and additional protection may do 
more to shield products from legitimate criticism of soft-
ware quality, reliability, and accuracy than to protect intel-
lectual property.  

For PG software, peer-reviewed validation studies are 
typically conducted by the software developers. Internal 
validations conducted by individual laboratories are usu-
ally unpublished, let alone independently reviewed. Rarely 
is there adversarial testing by a group incentivized to find 
problems and rarely are systems reviewed with an eye to 
how errors could impact a particular case or defendant. 
Defendants, particularly indigent defendants, rarely have 
access to resources to conduct adversarial testing in the 
context of their own case and even defense teams willing 
and able to do so may be denied access to the materials 
necessary to do so effectively.  

For FST in particular, OCME refused any independent 
review of the source code, supporting software develop-
ment materials, and executables, for years, even under a 
protective order. In a 2016 criminal case, a federal judge 
finally ordered OCME to provide FST’s source code to the 
defense team under a protective order. The team of defense 
experts who reviewed the code identified a number of con-
cerns, including a function, CheckFrequencyForRemoval, 
that they demonstrated was capable of dropping data that is 
helpful to the defense. This function runs counter to the 
methodology publicly described in previously sworn testi-
mony and peer-reviewed publications and appears to have 
been introduced as a work around for other problems with 
the system. Between 2011 and 2017, FST was used in ap-
proximately 1,350 criminal investigations. This timeline of 
documented changes to FST suggest that the analyses in 
casework involved the version modified in this way.  

In retrospect, we know that almost immediately after 
bringing FST online in April 2011, OCME had to take FST 
offline again for software maintenance. Based Freedom of 
Information requests and responses to litigation, we know 
that FST was modified in order to bring it back online in 



June 2011. It is not unusual to have bugs in software, but 
OCME’s response to the problem is telling. Changes, in-
cluding the CheckFrequencyForRemoval function, were 
made without any reporting the change to the NY State 
Commission on Forensic Science that approved FST for 
use in casework. In June 2017, Eugene Lien, OCME Assis-
tant Director said in an affidavit, “Because this modifica-
tion did not affect the methodology of the program, it did 
not require submission to the Commission on Forensic 
Science or the DNA Subcommittee.”  The results of our 
work strongly challenge this statement, as we will describe.  
 Subsequent to the findings of the defense experts in 
2016 and in response to filings by ProPublica and Yale’s 
Media Freedom and Information Access Clinic, the judge 
unsealed both the experts’ findings (produced originally 
under a protective order) and the entire FST source code 
that had been so closely guarded by OCME for years. Pro-
Publica then published the findings and the source code on 
Github (FST 2017). Appendix 1 contains the source code 
for the data-dropping function, CheckFrequencyForRe-
moval, from this Github repository. 

This paper represents the first quantitative study of the 
impact of the CheckFrequencyForRemoval function. We 
will describe in detail how it is possible for this function to 
drop data that is helpful to the defense. Then, using over 
400 samples of known origin from OCME’s own valida-
tion study, we quantify the impact of the function on the 
results both for individuals known to have contributed to a 
sample and individuals who did not contribute to the sam-
ple. While we find no evidence of a deliberate attempt to 
disadvantage the defense, we do see a willingness to put in 
sloppy fixes when problems with the software were identi-
fied. The system as a whole failed to put in the necessary 
provisions for accountability and transparency in order to 
incentivize disclosure and true repair. 

FST and the OCME Validation Study 
The NY State Commission on Forensic Science approved 
FST for use in casework based on a validation study de-
signed and conducted by OCME. The validation study un-
derlying FST consisted of 439 two- and three-person mix-
tures of varying quantities of DNA and contributor propor-
tions, genotyped using both High Copy Number (HCN) 
and Low Copy Number (LCN) protocols. Since these mix-
tures were created in a controlled laboratory setting, their 
true contributors and known non-contributors are known. 

The 439 mixtures were generated to serve as test evi-
dence samples for which the “correct” answers are known. 
These samples were constructed based on single-source 
blood and cheek swab samples of known origin as well as 
from items handled by multiple individuals, such as a 
computer mouse or a pen.  Some, but not all, of the 

touched items were cleaned with bleach and ethanol prior 
to handling.  Despite this pre-cleaning step, it is interesting 
to note that some samples still contained DNA that did not 
belong to any of the deliberate contributors. 

OCME evaluated all 439 mixtures in comparison to their 
known contributors and a set of 1,246 non-contributors. 
The non-contributor set consists of genotypes developed 
from OCME morgue bodies and a national data set (Butler 
et al 2003).  Allele frequency rates were established for 
NYC by OCME through genotyping morgue bodies. 
OCME developed a subset of these genotypes at only thir-
teen of the fifteen loci used by FST, simulating genotypes 
for the remaining two loci. Subpopulations were grouped 
by self- or OCME-reporting into African-American, Asian, 
Caucasian, and Hispanic categories.  The lab removed in-
formation on the races of the donors to the mixtures, 
though in publications they do claim that the mixtures rep-
resent the diversity of New York City (Mitchell et al. 
2012) (People v. Collins 2013).   

OCME originally wanted to validate FST for four-
person mixtures and additional four-person mixtures were 
generated during the study, but ultimately FST was not 
validated for the evaluation of four-person mixtures 
(Mitchell et al. 2012). OCME never published the valida-
tion data set but did produce it in 2012 pursuant to an 
agreement reached after litigation in the case People v. 
Collins. It was produced in printed form, then scanned and 
partly transcribed by the defense team.   

Since individuals share alleles and the genotypes of all 
individuals are not known, one normally cannot conclude 
that a specific individual is the sole possible source of  
DNA recovered from an evidence sample. Case law in the 
United States requires that a statistical weight of evidence 
be provided when an individual cannot be excluded as a 
possible contributor to a casework sample, in order to as-
sist them in determining the strength of that evidence. For 
example, if one in three individuals could not be excluded 
as possible contributors to a particular sample, then the 
strength of that conclusion is minimal, while if only one in 
a billion individuals could not be excluded, the strength 
would be high.   

Statistical weights calculated by PG systems are pre-
sented as likelihood ratios (LR), composed of the probabil-
ity of observing the data generated during the course of 
testing evidentiary samples, E, given two competing hy-
potheses. These hypotheses are typically constructed as H1 
or the prosecutor’s hypothesis, Hp, which includes the de-
fendant as a contributor, and an alternative hypothesis H2, 
or the defense hypothesis, Hd, which does not include the 
defendant as a contributor. For samples containing DNA 
from multiple individuals, both Hp and Hd will include 
additional contributors, either assumed contributors whose 
genotypes are known or contributors whose identities are 



unknown. The common formula, where E is the observed 
data is:    𝐿𝑅= Pr (𝐸|𝐻𝑝) / Pr (𝐸|𝐻𝑑) 

Consequently, a likelihood ratio of 1 is deemed “incon-
clusive” while an LR >1 is inclusionary (suggestive of 
guilt) and an LR <1 is exclusionary (suggestive of inno-
cence).  

Likelihood ratios are calculated for each locus and mul-
tiplied using the product rule, assuming linkage equilib-
rium between loci. Due to the complexity of forensic DNA 
mixture data and measurement uncertainty, it’s generally 
held that there is no “ground truth” for LRs, even for sam-
ples of known composition, against which PG results can 
be compared for accuracy (Steele and Balding 2014). Con-
sequently, confidence in PG systems is based in the appro-
priateness of the models underlying their algorithms and 
the quality of their software development processes and 
resulting executables. 

Some labs, including OCME, provide “verbal equiva-
lency” for LR values. LRs of 1-10 are described by OCME 
as “limited support” for the numerator hypothesis, gener-
ally Hp. Similarly, LRs of 10-100, 100-1000, and 1000+ 
are described as “moderate,” “strong,” and “very strong,” 
respectively (OCME 2016).  

For each sample, FST calculates four LR using allele 
frequencies from each of OCME’s four default reference 
subpopulations (Asian, Black, Caucasian and Hispanic). 
As a conservative measure, only the lowest of these four 
LR’s is included in the final written report.1   

Likelihood ratios are calculated for each locus and mul-
tiplied using the product rule. FST originally included all 
15 loci in its calculations, as one would expect. However, 
CheckFrequencyForRemoval removes data for loci where 
frequencies of observed alleles across all replicate amplifi-
cations summed to ≥97% in any of FST’s four reference 
subpopulations.  Logically, frequencies over 100% should 
not occur, but in practice, they do. There are many things 
that could lead to this inaccuracy (e.g. errors introduced by 
multiple rounds of amplifications (drop-out errors), con-
tamination errors (drop-in errors) or issues with the use of 
minimum allele frequencies. However, rather than deal 
with the inaccuracies in a transparent way, OCME chose to 
deal with the errors by simply dropping the contribution of 
any loci that approaches the 100% boundary. This is done 
even if the information at that locus is exculpatory infor-
mation that would have helped the defense or whether it is 
inculpatory evidence that would help the prosecution. 
Nothing was done to report when this occurred and it is 
completely possible that the set of dropped data would 
have altered the LR values reported or even the verbal 
equivalence category of the result. This clearly seems rele-

                                                
1 Conservative: “favoring the defendant. A conservative estimate is delib-
erately chosen to be more favorable to the defendant than the best (unbi-
ased) estimate would be” (NRC 1996). 

vant to defense teams, the NY State Commission on Foren-
sic Science and the public, but no such disclosure was 
every made by OCME. In the next section, we quantify 
how often on OCME’s own validation study this type of 
change in the reported LR or the verbal equivalence cate-
gory.  

Independent Comparison Testing 
In this section, we describe our independent testing of FST. 
We describe both how we automated testing of FST and 
the results of comparing FST output with and without the 
CheckFrequencyForRemoval function. We examine the 
impact of that change on both known contributors to sam-
ples in the OCME validation study as well as a set of non-
contributors. 

We acquired FST v2.5 from the ProPublica’s GitHub 
repository (commit 5b353500d) (FST 2017). FST is a C# 
ASP.NET application using an MS SQL database.  Its in-
terface is browser-based. We ran it on a QEMU virtual 
machine with Windows 10 Pro 64-bit using 32 GB of 
RAM and an Intel Xeon processor.  

FST’s installation is non-trivial, requiring database con-
nection configuration and a custom Windows service per 
installation. For testing purposes, we hard-coded a bypass 
for user access control. Two versions of FST v2.5 were 
used for all analyses – one with the CheckFrequencyFor-
Removal function enabled and one with it disabled. The 
disabled version is intended to emulate the pre-
modification version of FST, though the source code for 
that version has not been publicly released.  FST does not 
provide an external API or command line interface, so we 
developed several noninvasive wrapper scripts for automa-
tion.  

With and Without CheckFrequencyForRemoval 
LRs were generated for all 439 two and three person mix-
tures from FST’s validation study and compared to their 
known contributors for a total of 1,245 evaluations. 104 
mixtures (23.7%) were subject to the locus-dropping be-
havior. The change in LRs between FST versions is shown 
in Figure 1. In Figure 1, we report all four of the LRs re-
ported for each sample, not just the lowest one. The y-axis 
value for each point is the LR reported with CheckFre-
quencyForRemoval enabled and the x-axis value is the LR 
for the sample without CheckFrequencyForRemoval.  
 Figure 1 explores the impact on the results for known 
contributors to a sample (a simulation of guilty parties). 
Figure 2 explores the impact on the results for non-
contributors (a simulation of innocent individuals). Forty 
samples exhibiting locus-dropping behavior during the 
known contributor analysis were selected for comparison 
against 700 non-contributors from the national data set 



using both versions of FST. A range of samples were se-
lected, from 15-575pg of template DNA as well as on the 
basis of deducible (20) vs. non-deducible (20); 2-person 
mixtures (12) vs. 3-person mixture (28); and HCN (17) vs. 
LCN (23). As in Figure 1, we report all four of the LRs 
reported for each sample, not just the lowest one. The y-
axis value for each point is the LR reported with Check-
FrequencyForRemoval enabled and the x-axis value is the 
LR for the sample without CheckFrequencyForRemoval. 
 In both Figure 1 and 2, points above the lightly dotted 
line in the center (y=x) represent where the modified ver-
sion of FST reports an LR value that is more inclusionary. 
Especially for the non-contributors or simulated innocent 
individuals who did not actually contribute to the sample, it 
is clear to see that the addition of CheckFrequencyForRe-
moval did result in discarding information helpful to the 
defense in many cases.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 1: Known contributor likelihood ratios for FST v2.5 with 
the data-dropping function CheckFrequencyForRemoval vs. FST 

v2.5 with the function disabled. A log10 scale is used for both 
axes. 

Changes in Verbal-Scale Equivalent Labels 
Changes to LR verbal-scale equivalents are especially 

likely to impact the perceived weights of evidence. To ex-
amine this we used only the lowest LR reported for each 
sample rather than all four reported LRs as shown in Fig-
ures 1 and 2.  

 For the known contributor tests described above, 
changes in verbal equivalencies were observed for thirty-
six comparisons (2.9%). Eleven false-exclusions (0.9%) 
became more exclusionary when locus-dropping was en-

abled while only two became more inclusionary while still 
remaining below LR=1. Three true-inclusion LRs became 
falsely exclusionary when locus-dropping was enabled, 
and one false-exclusion LR changed to a true inclusion. 

Of the 206 LRs for which one or both versions of FST 
reported LRs between 0.001-1,000 (“limited,” “moderate,” 
or “strong” support for Hp or Hd), 36 LRs (17.5%) 
changed verbal equivalents between versions. This sug-
gests that for true-contributor LRs near 1 (inconclusive), 
the effect of enabling or disabling CheckFrequencyForRe-
moval could be significant. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 2: Non-contributor likelihood ratios for FST v2.5 with the 
data-dropping function vs. FST v2.5 with this function disabled. A 

log10 scale is used for both axes. 

For the non-contributor tests described above, a false in-
clusion rate of 0.08% is observed across the 28,000 com-
parisons, higher than the 0.03% reported for all analyses 
conducted in the FST validation study. Four results 
changed from true-exclusion LRs when locus-dropping 
was disabled to false-inclusion LRs when locus-dropping 
was enabled. Five LRs changed from false inclusions 
without locus-dropping to true exclusions when locus-
dropping was enabled. 

There were 115 (0.4%) LRs that varied in verbal-scale 
equivalency labels between FST versions. Of the 294 LR’s 
reported between 0.001-1,000 by one or both FST ver-
sions, those 115 constituted 39.1% of LRs near 1, suggest-
ing that non-contributor LRs near 1 are similarly suscepti-
ble to differences in verbal-scale equivalency labels be-
tween versions of FST. 

Appendix 2 contains tables tracking changes in verbal-
scale equivalents for both known contributors and non-



contributors. For this set of samples for OCME’s own vali-
dation study, the number of impacted samples is modest. 
However, it still makes clear that the impact does occur 
and could impact the fate of individuals in court. Individu-
als impacted would have no way of knowing that data 
helpful to their case was dropped and without disclosure of 
the FST source, there would have been little to no-
incentive to ever repair the problem. 

Criminal Justice Decision Making  
Individual defendants and the public often will not have 
this opportunity to look under the hood of software used in 
criminal justice decision making. So, it is important to use 
this case as a lens through which to consider what incen-
tives exist for protecting some of widely accepted decision 
making principles such as the right to a public trial, the 
rights of defendants to review and confront the evidence 
against them and the right to equal justice under the law. 
 What incentives exist for debugging black-box software 
systems used in the criminal justice system in general?  
Would it have been possible for defense teams to find this 
issue without source code access? Would it be possible to 
know whether this bug is impacting a particular defendant?  
What would have been the incentives for disclosure or im-
provement if OCME had been allowed to deny defense 
expert review and adversarial testing indefinitely? 
 Here we propose a set of modifications to the holistic 
decision making process to encourage bugs in forensic 
DNA systems like FST to be found and fixed.   

One key lesson is the importance of adversarial review 
(another cornerstone of the judicial process). If validation 
studies are designed by the developers, they are likely to 
focus on demonstrating the effectiveness of the system 
rather than aggressively route out problems. In an envi-
ronment where any bug report is answered with “you are 
just complaining because you are guilty” what incentive 
will there be to even investigate reports of errors.  Also, 
what will counteract the tendency to sweep errors under 
the rug when they are found or put in an inappropriate fix 
to make the problem go away as we saw in the FST case? 
We note that in this case it was the persistence of defense 
teams that provided the last stop-gap measure for forcing 
debugging of these systems.  

For the purposes of accountability, transparency and 
enabling of third-party testing, we recommend targeting 
the procurement phase of software. When labs use public 
money to purchase, validate, and train on PG software, 
procurement policies should require or at least give sub-
stantial credit for products that include pro-transparency 
factors. Such factors could include open-source software, 
access to software engineering artifacts including issue 
trackers, internal testing plans and results, software re-

quirements and specifications, hazard and risk assessments, 
design documents, etc. Ideally, developers or third-parties 
would offer bug bounties or other funding streams to in-
centivize third party testing. 

While all models used in forensic DNA labs have been 
conceptually described in a public manner, as we have seen 
with FST the conceptual model does not always match the 
implemented system and the technical descriptions of these 
actual systems are lacking. Notably, bug (issue/defect) 
trackers and change logs for PG systems vary from non-
existent to secret to publicly accessible.  

There are actually many PG software systems that all 
purport to do the same task. Each of these systems is 
claimed to be a reasonable model for evaluating mixed 
DNA, though their underlying mechanisms for calculating 
LRs vary. An incriminating result from any one PG sys-
tems can be damning evidence in court. Easier access for 
comparison testing would be advantageous if their outputs 
could be compared more directly. One key advance would 
be surfacing important parameters like drop-in rates, drop-
out rates and the population frequency files used, rather 
than burying some values inside the source code. Estab-
lishing common granularities of variation (e.g. different 
drop-out rates per loci vs. one overall drop-out rate) would 
be an important advance. Common file formats for input 
data would be a further improvement, decreasing time 
costs and transcription risks (e.g. typos) when comparing 
results of different systems. 

 Most PG systems are designed with casework in mind. 
Many systems have no native ability to batch-process mul-
tiple evidence samples or compare a single evidence item 
to multiple reference profiles (e.g. a set of non-contributors 
or an offender DNA database). While it is possible to mod-
ify source-available systems to enable batch-processing, 
modifications risk introducing defects and require further 
software validation. APIs, or at least CLIs, could allow for 
easier batch-processing tasks in both casework and re-
search settings. Requiring these during the procurement 
phase would be an important advance.  

Open-source systems are attractive for obvious reasons 
of transparency, accountability, and traceability. It cannot 
be overemphasized that the post-validation modification 
made to FST was only publicly acknowledged by OCME 
after FST’s source code was examined in conjunction with 
independent testing. Seemingly minor changes to source 
code can have substantial impacts in criminal casework.  
 Terms-of-service contracts for software in the criminal 
justice space can have clauses preventing third-party re-
view or publishing of results in the terms of service as is 
unfortunately common for many commercial systems.  
Non-disclosure agreements and protective orders covering 
commercial systems, complicate reviews and prevent dis-
semination of results – regardless of how favorable to the 



developer or unfavorable to defendants those findings may 
be.  
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Appendix 1: CheckFrequencyForRemoval 
This appendix contains the source code for the function Check-
FrequencyForRemoval, available on github at the following link: 
https://github.com/propublica/nyc-dna-
software/blob/master/FST.Common/Comparison.cs. 
 
///	  This	  function	  checks	  for	  the	  total	  frequencies	  according	  to	  races	  

and	  removes	  the	  allelles	  from	  calculation	  

	  	  	  	  	  	  	  	  ///	  if	  the	  sum	  of	  frequencies	  are	  greater	  than	  0.97.	  

	  	  	  	  	  	  	  	  ///	  </summary>	  

	  	  	  	  	  	  	  	  public	  void	  CheckFrequencyForRemoval(DataTable	  dtFrequencies)	  

	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  //	  if	  our	  db	  connection	  isn't	  initialized,	  do	  it.	  then,	  get	  

all	  the	  ethnicities	  (races)	  

	  	  	  	  	  	  	  	  	  	  	  	  myDb	  =	  myDb	  ??	  new	  Database();	  

	  	  	  	  	  	  	  	  	  	  	  	  DataTable	  raceTable	  =	  myDb.getAllEthnics();	  

	  	  	  	  	  	  	  	  	  	  	  	  int	  intsr	  =	  0;	  

	  	  	  	  	  	  	  	  	  	  	  	  string[]	  srem	  =	  new	  string[comparisonLoci.Count];	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  //	  we	  go	  through	  all	  the	  comparison	  loci	  and	  check	  whether	  

the	  sum	  of	  the	  frequencies	  for	  that	  locus	  is	  greater	  than	  0.97.	  

	  	  	  	  	  	  	  	  	  	  	  	  //	  if	  it	  is,	  we	  remove	  the	  locus.	  frequencies	  are	  only	  used	  

for	  the	  alleles	  in	  the	  evidence	  replicates.	  

	  	  	  	  	  	  	  	  	  	  	  	  for	  (int	  i	  =	  0;	  i	  <	  comparisonLoci.Count;	  i++)	  

	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  bool	  blRemove	  =	  false;	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  get	  a	  CSV	  list	  of	  alleles	  for	  all	  the	  replicates	  at	  a	  

locus	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  IEnumerable<string>	  unknownPair	  =	  EvidenceAllelesAtLo-‐

cus(evidenceAlleles[comparisonLoci[i]]);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  check	  if	  the	  frequency	  is	  greater	  than	  0.97	  for	  any	  

of	  the	  races.	  frequencies	  are	  values	  for	  an	  allele	  at	  a	  locus	  for	  a	  

certain	  race	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (DataRow	  eachRow	  in	  raceTable.Rows)	  



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  raceName	  =	  

eachRow.Field<string>("EthnicName");	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  float	  freqSum	  =	  GetFrenquencySum(unknownPair,	  com-‐

parisonLoci[i],	  raceName,	  dtFrequencies);	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (freqSum	  >=	  0.97)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  blRemove	  =	  true;	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (blRemove)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  srem[intsr]	  =	  comparisonLoci[i];	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  intsr++;	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  //	  now	  we	  iterate	  through	  all	  the	  loci	  and	  remove	  them	  from	  

the	  list	  of	  comparison	  loci,	  the	  evidence,	  and	  known	  and	  comparison	  

profiles	  

	  	  	  	  	  	  	  	  	  	  	  	  for	  (int	  i	  =	  0;	  i	  <	  srem.Length;	  i++)	  

	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (srem[i]	  !=	  null)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  locus	  =	  srem[i];	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  remove	  the	  locus	  from	  the	  comparisons	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  (int	  j	  =	  1;	  j	  <=	  comparison-‐

Data.NumeratorProfiles.ComparisonCount;	  j++)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if(comparisonAlleles[j].ContainsKey(locus))	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  comparisonAlleles[j].Remove(locus);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  remove	  the	  locus	  from	  the	  knowns	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  knownCount	  =	  (comparison-‐

Data.NumeratorProfiles.KnownCount	  >	  comparison-‐

Data.DenominatorProfiles.KnownCount)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?	  comparison-‐

Data.NumeratorProfiles.KnownCount	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  comparison-‐

Data.DenominatorProfiles.KnownCount;	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  (int	  j	  =	  1;	  j	  <=	  knownCount;	  j++)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if(knownAlleles[j].ContainsKey(locus))	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  knownAlleles[j].Remove(locus);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  remove	  the	  locus	  from	  the	  evidence	  replicates	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  (int	  j	  =	  1;	  j	  <=	  replicates;	  j++)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if(evidenceAlleles.ContainsKey(locus))	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  evidenceAlleles.Remove(locus);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  remove	  the	  locus	  from	  the	  list	  of	  comparison	  loci	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  comparisonLoci.Remove(locus);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  	  	  	  	  	  	  	  	  	  	  }	  

	  	  	  	  	  	  	  	  }	  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

Appendix 2: Tables of Changes in Verbal 
Scale Equivalent Labels 

 

Table 1: Known-Contributor: Changes in verbal-scale equivalent 
labels for known contributor LR’s between versions of FST with 
and without locus-dropping behavior. Italicized values on the 

diagonal indicate no change in label between versions. 
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Table 2: Non-Contributor: Changes in verbal-scale equivalent 
labels for non-contributor LR’s between versions of FST with and 
without locus-dropping behavior. Italicized values on the diago-

nal indicate no change in label between versions. 
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