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Abstract

Our research aims at developing intelligent systems to
reduce the transportation-related energy expenditure of
a large city by influencing individual behavior. We in-
troduce COPTER - an intelligent travel assistant that
evaluates multi-modal travel alternatives to find a plan
that is acceptable to a person given their context and
preferences. We propose a formulation for acceptable
planning that brings together ideas from AI, machine
learning, and economics. This formulation has been in-
corporated in COPTER producing acceptable plans in
real-time. We adopt a novel empirical evaluation frame-
work that combines human decision data with high-
fidelity simulation to demonstrate a 4% energy reduc-
tion and 20% delay reduction in a realistic deployment
scenario in Los Angeles, California, USA.

Introduction
Transportation is one of the largest consumers of energy in
the world - in the United States, it accounted for 29% of
energy consumption in 20161. Despite occupying a central
place in the economy, transportation is far from efficient.
Many areas of urban transportation networks are underuti-
lized while other areas are congested. Congestion alone in
the United States wastes 6.9 billion hours and 3.1 billion gal-
lons of fuel per year (Schrank et al. 2015). Thus, transporta-
tion has become an important policy & innovation problem.
Recently, public and private entities have begun introducing
new transportation services including bike/scooter share, car
share, ride hailing, and carpooling to complement private ve-
hicles and existing public transit. This increasing accessibil-
ity of novel modes and the corresponding need for planning
solutions creates an opportunity for mobility marketplaces
that aggregate a variety of offerings into a single market,
similar to what Travelocity or Expedia does for air travel.
Such mobility marketplaces have the potential to influence
people to adopt sustainable modes at a large scale.

Our long-term research goal is to develop AI methods to
support efficient transportation reducing overall energy con-
sumption and increasing citizen satisfaction in metropolitan
areas. There are two important components to this problem
of changing the behavior of a large population toward this
social good goal. The first - the multi-modal route planning
problem - addresses how to reason about the large decision
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space of a variety of modes that are accessible to a person to
determine an energy-efficient trip. The second component -
the influence problem - is guiding an individual’s behavior to
actually adopt trips that reduce the overall energy expendi-
ture of a region. While the multi-modal route planning prob-
lem has been studied in detail by the AI community (Bast et
al. 2016), the influence problem is largely unexplored.

Our approach to the influence problem is embedded
within an intelligent travel assistant - Collaborative Opti-
mization and Planning for Transportation Energy Reduction
(COPTER). We illustrate COPTER’S desired behavior with
the following example. Assume that John makes a regular
trip driving to his office every weekday morning and has
COPTER installed on his smartphone. In a timely fashion, 15
minutes before he has to leave, COPTER suggests an alter-
native trip - walk to the bus stop and take the direct bus to
office - chosen from all available alternatives. This trip is
not only energy-efficient, but also acceptable to John given
the context of his travel. COPTER makes this suggestion by
considering that the route is direct, that a lot of people in
his neighborhood take the bus, and that he is traveling to his
workplace and therefore, will not be carrying heavy loads.
Further, COPTER recognizes that he cares about his impact
on the environment and frames this information in a com-
pelling way by telling him how much emissions he can re-
duce by taking this trip. There are several aspects to influenc-
ing someone to change their behavior. In this example, rea-
soning about acceptability of a trip recommendation, when
should it be communicated, and how it should be expressed
is useful for influencing John.

In this paper, we study a specific aspect of the influence
problem - how a person’s context and preferences can be in-
tegrated into the planning framework to produce an accept-
able recommendation and how this acceptability impacts a
person’s adoption of the recommendation. To do this, we
bring together ideas from AI planning, machine learning, as
well as economic choice theory. More specifically, our paper
makes the following contributions:

1. Introduces the transportation influence problem,
2. Proposes and implements a novel integration of AI plan-

ning theory and economic choice theory,
3. Defines a machine learning model to capture the accept-

ability of recommended plans, and
4. Evaluates the potential impact on Los Angeles by combin-

ing human decision data with a high-fidelity transporta-
tion simulation model.



The Setup
To understand the novelty of our approach, we first review
the two strands of research we build upon, and later, we de-
scribe their limitations for the influence problem.

Multi-Modal Route Planning
Routing in transportation networks is a well studied prob-
lem dating back to Dijkstra’s algorithm (Dijkstra 1959). To-
day, through pre-computation and heuristics, planners iden-
tify optimal routes for continent-size networks in millisec-
onds (Bast et al. 2016).

These approaches use the standard transportation network
representation as a directed graph G = (V,E), where V is a
set of nodes and E ⊆ V × V is a set of directed edges. The
formalism also includes a standard representation of time, T .
A request for transporting a person from their origin location
v ∈ V starting at a certain time ts ∈ T to their destination
w ∈ V before a certain deadline te ∈ T is formalized as
r = (v, w, ts, te). The planning problem is formalized as
(G, r). Traversal of each edge is represented as a pair (e, t)
where a person begin moving along the edge e at time t.
A plan π = ((e1, t1), ..., (en, tn)) is a valid solution of the
problem (G, r) if and only if:

1. the edges connect the origin with the destination. e1 =
(v0, v1), ..., en = (vn−1, vn) ∧ (v0 = v) ∧ (vn = w),

2. temporal constraints are satisfied, ts ≤ t1 + dur(e1) ≤
t2 + dur(e2) ≤ ... ≤ tn + dur(en) ≤ te where dur(e)
represents the time it takes to traverse the edge e.

To find an optimal plan, cost function cost(e) is defined for
every edge inG. An optimal plan is a plan that minimizes the
cumulative cost π∗ = arg minπ∈Π

∑
e∈π cost(ei). In the

simple case, the cost is the time it takes to traverse the edge,
cost(ei) = dur(ei). A∗ search with a reasonable heuristic
(e.g., euclidean distance) efficiently solves these problems.

Recent work provides extensions for multi-modal trips
(Dibbelt, Pajor, and Wagner 2015) and more elaborate cost
functions. This is achieved by adding additional edges be-
tween vertices corresponding to the various modes (e.g.,
public transportation, biking, walking) that are available to
traverse them. When the edges represent public transit vehi-
cles, they have temporal constraints representing the vehicle
schedules. Each edge e is labeled with the mode it repre-
sents, e.g., lbl(e) = b for an edge representing taking the
bus. Consequently, each plan π corresponds to a sequence
of labels, word (wp). This supports an additional require-
ment on valid solutions that the word is part of the language
of acceptable mode sequences (wp ∈ L), represented using
regular expressions. This constraint eliminates plans that are
impossible, such as taking a bus and then getting on a bike.
Others (Botea 2016) have shown that in this formulation, the
cost function can consider additional dimensions including
price, energy, and schedule risk. The cost function is formal-
ized as cost(π) =

∑
e∈π

∑
ϕ∈Φ θϕϕ(e) where Φ is the set

of evaluative functions including energy consumed, price,
etc. and θϕ corresponds to how much importance that eval-
uative function has toward computing the overall edge cost.

Utility-Based, Probabilistic Choice Theory
Economists use the framework of rational choice theory
(Tversky and Kahneman 1986) to study how humans make

choices from a set of competing alternatives. Empirical re-
search in transportation economics (Domencich and Mc-
Fadden 1975) has shown that such frameworks are useful
in predicting transportation mode shares in urban popula-
tions. The theory posits a choice process: for a trip, the
individual first determines the available mode alternatives;
next, evaluates the attributes of each alternative relevant to
the travel decision, and then, uses a decision rule to select
an alternative. Rational decision making perspective moti-
vates utility maximization as a relevant decision rule. Utility
maximization is based on two fundamental concepts. First,
the attributes of a mode alternative can be reduced to a
scalar utility value. Second, the decision maker selects the
alternative with the highest utility value. The deterministic
theory assumes all aspects of the decision process can be
observed and measured. Transportation decision-making is
only partially-observable. By adding noise, the utility of an
alternative for an individual can be split into two compo-
nents - observable utility and error:

util(xi, fp) = val(xi, fp) + ε(xi, fp)

Here val(xi, fp) is the observable portion of the utility. This
quantity is modeled as a linear combination of measurable
attributes such as travel time, travel cost, walk distance, etc:

val(xi, p) = γ1 × xi1 + γ2 × xi2 + ...+ γk × xik+

λ1 × fp1 + λ2 × fp2 + ...+ λl × fpl
(1)

γk is the parameter which defines the direction and im-
portance of the attribute k on the utility of an alternative i.
Similarly, λl defines the direction and importance of at the
person’s characteristic l .
ε(xi, fp) is the unobservable portion - the error term - of

the utility function. This theory assumes that the error terms
of various alternatives are independent. These assumptions
about the error term lead to a multinomial logit model that
estimates the probability Pr(i, p) of the person p selecting
the alternative i from the set of alternatives C:

Pr(i, p) =
eval(xi,fp)∑
j∈C e

val(xj ,fp)
(2)

Empirical work in transportation research (Ben-Akiva,
Lerman, and Lerman 1985) has studied how γ and λ pa-
rameters in equation 1 can be estimated from human choice
data using maximum likelihood estimation given equation 2.

Acceptable Planning
There are two main challenges that have to be addressed in
order to determine trip recommendations that are accept-
able - useful in influencing behavior. The first one is that
none of the theories described in the previous section ex-
plicitly provide a definition of acceptability. Planning com-
putes the optimal path for an individual given a cost function
defined for every edge while the choice theory predicts the
probability of a trip occurring given some observable char-
acteristics about the person and the mode of transport. In
COPTER, each traveler has an expected plan for an upcom-
ing trip, and our goal is to produce an acceptable alternative
that changes their behavior to reduce energy consumption
across the network. The second is an integration issue. For
efficient search, the planning theory requires the costs to be



defined locally at each edge. The choice theory and empiri-
cal evidence from transportation research on the other hand
suggests that there are aspects of a person’s trip context that
influence mode choice but cannot be defined over edges in a
graph. These include the household income, number of ve-
hicles at home, etc. In the sections below, we propose how
these challenges can be addressed for acceptable planning.

Defining Acceptability
We adapt choice theory’s decision process to incorporate ac-
ceptability as follows. John (from the example in the In-
troduction) drives to his office every weekday on a certain
route. The choice theory suggests that this usual route has
a measurable utility, val(xu, fp)) and a probability of be-
ing selected based on equation 2. Here xu is the vector
of attributes representing John’s usual mode such as time,
distance, etc. and fp is a vector that describes John’s at-
tributes that pertain to mode selection such as income, ed-
ucation level etc. Upon receiving the recommendation, r,
from COPTER, John evaluates it against his usual means
of travel. The recommendation r has a measurable util-
ity, val(xr, fp), given the utility function underlying John’s
preferences. On adopting the recommendation, John will ex-
perience a switching cost - ∆u,r - the difference in utili-
ties of his usual route and the proposed route. Conversely,
∆r,u = −∆u,r, can be understood as the switching gain a
person makes on adopting the recommendation r.

Following probabilistic choice theory (equation 2):

eval(xu,fp)

eval(xr,fp)
=
Pr(u, p)

Pr(r, p)

∆u,r = val(xu, fp)− val(xr, fp) = ln
Pr(u, p)

Pr(r, p)

∆r,u = −∆u,r = ln
Pr(r, p)

Pr(u, p)

(3)

We postulate that the acceptability of a route is related
to its switching gain. If we can estimate the likelihood of a
person taking their usual mode of travel and that of the rec-
ommended mode, we can compute the change in utility and
consequently estimate the recommendation’s acceptability.
This formulation is a significant departure from prior empir-
ical work in transportation research. The prior work focuses
on estimating the coefficients in equation 1 to compute exact
utility values given measurements of relevant, observable at-
tributes. For planning, this exact computation of utility value
is not necessary and the switching gain (and acceptability)
can be computed from estimated likelihoods alone.

Estimating Switching Gain
As explained earlier, in order to estimate the acceptability of
a recommendation r for a person p, it is crucial to estimate
the likelihood Pr(r, p) of it being selected as well as for that
person’s usual mode of travel, Pr(u, p). We adopt a data-
driven, ML-based approach to estimate these likelihoods. A
typical ML classifier generates a prediction of a class, given
a set of input features, by computing likelihoods for each
class and selecting the class with the highest likelihood.

To develop our ML classifiers, we used the California
Household Travel Survey (CHTS) that consists of a single-
day (distributed in a year) travel diary of people from 58

Mode Baseline 1 Baseline 2 RF MLP
Walk 0.00 0.12 0.82* 0.62
Cycle 0.00 0.00 0.81* 0.28
Bus 0.00 0.02 0.78* 0.38
Subway/train 0.00 0.00 0.58* 0.05
Drive 0.72 0.56 0.93* 0.86
Ride 0.00 0.28 0.84* 0.65
Motorcycle 0.00 0.00 0.80* 0.00
Total 0.68 0.40 0.88* 0.74

Category
Non-motorized 0.00 0.05 0.83* 0.60
Public transit 0.00 0.14 0.79* 0.43
Motorized 0.90 0.82 0.97* 0.93
Total 0.68 0.70 0.94* 0.86

Table 1: F1-scores for predicting mode classes and cate-
gories with various ML methods. Baseline 1 is most fre-
quent, Baseline 2 is weighted random, RF is random forest
classifier, and MLP is multi-layer perceptron

counties of California and 3 counties of Nevada. To ground
our research within the context of a specific metropolitan
area, we extracted trip data for 4, 889 Los Angeles (LA) res-
idents (from 2, 006 households). Our trip dataset contains
78, 380 trips undertaken in LA county. For each trip, the data
consists of the main mode of transport as well as other de-
mographic and context information.

Features and Classes Our trips dataset includes trips that
were undertaken using 7 different modes including - walk,
cycle, bus, subway/train, drive, ride, motorcycle. For each
trip, we also extracted these features:
• trip-related: trip distance,
• demographics: such as education level, number of peo-

ple/students/workers in the household,
• employment: number of hours worked every week, in-

come, number of jobs, flexibility of work,
• mode accessibility: number of automobiles in the house-

hold, number of bicycles in the household, owns a driver’s
license & transit pass, and

• mode experience: transit used, bike trips made & walking
trips made in the past week.

Note that these features correspond to x and fp in the choice
theory formulation.

ML Models & Results We explored two different multi-
class prediction problems: predicting the mode and predict-
ing the category of the mode where we categorized walk-
ing & cycle as non-motorized, driving, riding &, motorcy-
cle as motorized, and bus & subway as public transit. For
each problem, we use two different algorithms: a random
forest classifier with 20 estimators of 30 depth each; and a
multi-layer perceptron with 4 layers ([1000, 500, 100, 100]).
We found these parameters through a bucketed linear hyper-
parameter search. Classifier performance was compared
with two baselines: assigning the most frequent class to ev-
ery sample (most frequent); and distributing the labels by
their frequency in the dataset (weighted random).
F1 scores for both classifiers as well as baselines on a

20% test set are shown in Table 1. We see that both ML



classifiers perform significantly better than the baselines for
not only predicting each class (& category) but have a bet-
ter overall performance as well. This suggests that the ML
classifiers contain useful predictive information that can be
used to estimate the switching gains as well as acceptability
of a recommendation. We further see that the random forest
classifier has better performance than the multi-layer percep-
tron. This is expected due to the limited size of the dataset.
We further see that the performance on category prediction
is better than mode prediction. Again, this is to be expected
as combining mode classes leads to more data to learn from
and consequently better performance.

Switching Gain By using the ML model described here
to estimate likelihoods of various modes, we can compute
the switching gain to any mode from a specific mode a per-
son usually takes. The ML models use a diverse types of in-
formation including demographics, trip features, and mode
experience with modes to estimate likelihoods and conse-
quently, switching gain is personalized to an individual’s
context. Intuitively, switching gain captures the idea that it
is easier to switch to modes that are used by people who are
similar to you and make similar trips.

Evaluating Acceptability
To assess the impact on switching gain (acceptability) on
likelihood of recommendation adoption, we conducted a
mode adoption study with 49 (27 female, 22 male) partic-
ipants who were regular drivers in Los Angeles. The partic-
ipants were gathered by a paid recruiter who ensured com-
pliance. The participants were provided $30 for completing
the study.

Figure 1: An example of the mode adoption question in the
survey along with the response measurement instrument.

Materials Each study participant took two surveys:

1. A profiler survey included questions for features used in
our classifier. For each participant, the survey collected a
set of trips they regularly made by driving in terms of the
origin, destination, departure time, and purpose.

2. A mode adoption survey presented each participant 10 in-
fluence questions. Each question proposed an alternative
mode route for one of their typical driving trips. Care was
taken to not include implausible alternatives such as walk-
ing a 10 mile distance. Each question included informa-
tion about mode characteristics such as the time of de-
parture and a visual representation of the proposed route
(shown in Figure 1). The participants indicated likelihood
of adopting the recommendation using a 7-point Likert
scale (from extremely unlikely (1) to extremely likely (7)).

Stated preference methods are typically used to measure the
acceptability of new products and provide realistic estimates
of population behavior (Johnston et al. 2017).

Models The study measures mode adoption as an ordinal
variable on the Likert scale. To simulate real-world behav-
ior where someone will either follow the recommendation
or not, we compressed the ordinal response by categorizing
everything reported as slightly likely or higher as 1 and oth-
ers at 0. Our assessment of the impact of switching gain on
adoption included the following regression models:

1. For the ordinal variable, we fit a mixed-effects linear re-
gression of the form y = α+ βx+ γz+ ε, where y is the
adoption vector, x is a fixed-effect vector corresponding
to an independent variable of interest, and z is a random
effect vector corresponding to a participant. α is the inter-
cept and β and γ are coefficients and ε is the error term.

2. For the binary adoption variable, we fit a mixed-effects
logistic regression of the form Pr(y) = 1/(1 +
e−(α+βx+γz+ε)), where Pr(y) is the probability of ob-
serving the specific adoption value (0/1), other coeffi-
cients are similar to those in the previous model.
Participants were included as random effects in these

model to account for individual differences in interpreta-
tion of the scale. For independent variables (x, in the models
above), we explored three definitions of acceptability:

1. switching gain, ∆r,u

2. odds, e∆r,u = Pr(r, p)/Pr(u, p)
3. probability, Pr(r, p)
where r is the recommended mode, u is the usual mode for
person p and Pr() is the likelihood from our ML models.

Results Overall, the results show that people reported a
willingness to change their travel behavior. Detailed results
are shown in Table 2. For each independent variable, we re-
port R2c, the proportion of the data that is explained by the
complete model, and R2m, the proportion is explained by
the variable. We see that all definitions of acceptability sig-
nificantly impact the adoption of recommendation. The co-
efficients align with the intuition about the domain - as the
cost of adopting the recommendation decreases (switching
gain increases), adoption increases. We see that R2c, R2m
are higher for odds. These results suggest that it is the best
predictor mode adoption because it explains the most data.
It is noteworthy that odds and probability have similar im-
pact on adoption. This is likely due to our participants being
regular drivers with Pr(u, p) ≈ 1. With a more diverse pop-
ulation in a larger deployment, the differences between the



definitions can be teased apart.

Dependent variables→ Adoption Adoption
Independent variables↓ (ordinal) (binary)
(intercept) -0.017 -0.185
switching gain, ∆r,u 0.108* 0.104*
R2m 0.034 0.035
R2c 0.347 0.270
(intercept) -0.949 -1.065
odds, e∆r,u 2.386*** 2.159*
R2m 0.075 0.064
R2c 0.379 0.300
(intercept) -0.964 -1.080
probability, Pr(r, p) 3.623*** 3.317*
R2m 0.066 0.058
R2c 0.369 0.293

Table 2: Regression modeling results for ordinal and binary
mode adoption. *** p < 0.001, ** p < 0.05, * p < 0.1

Estimating Likelihood of Adoption
To identify the recommendation that reduces the most ex-
pected energy, it is necessary to estimate the likelihood of
adoption. Recall that our motivating example suggests that
a recommendation should be timely, acceptable, and com-
pelling to motivate behavior change. At this point, we have
only evaluated acceptability. Therefore, COPTER uses the
logit model of the odds to estimate the probability of a per-
son adopting a recommended route.

Finding Energy-Efficient Acceptable Plans
Figure 2 provides an overview of COPTER’s operation. In a
deployment, we expect to maintain a series of future trips
for each user. Before an expected departure, COPTER com-
putes an energy efficient acceptable alternative and sends it
to the user 15 minutes before they would have to leave for
the new trip. To compute this plan, we augment the multi-
modal planning formulation with our acceptability model:

1. Generate a mode candidate set Mp for the person p for
whom the request is made for. Mp can be generated by
acquiring information about if they can walk and if they
have a bike. For example, someone who doesn’t own a
bike but can walk M = {walk(w), bus(b), subway(s)}.

2. Given Mp, determine the language Lp. Recall that a lan-
guage is a set of regular expressions that denote valid
multi-modal plans for this traveler. For the example
above, Lp = {w∗, w ∗ b + w∗, w ∗ s + w∗}, where w
is walking, b is bus, and s is subway or train. Note that
while this is a fairly simplistic set, the formulation can be
extended to include more complex plans.

3. For every element in Lp, generate the most time-
efficient plan (using the multi-modal formulation) where
cost(e) = dur(e,m) where m is the mode used to tra-
verse the edge. The heuristic is the euclidean distance.
This process will generate a candidate set of plans, Πp.

4. Compute the energy reduction in each plan π ∈ Πp using
existing mesoscopic energy models (Elbery et al. 2018).

5. Evaluate the likelihood of adoption, adopt(π, p), for ev-
ery π ∈ Π using the logit model of adoption.

6. Select a plan that has maximal expected energy savings,
π∗ = arg maxπ∈Π adopt(π, p)× energy(π).

Figure 2: COPTER identifies the recommendation with the
largest expected reduction in energy consumption by accept-
able planning and energy modeling.

Simulation Experiments
While deploying COPTER in a large city to measure the im-
pact is the ideal evaluation, it is extremely resource intensive
to conduct. Without being incorporated into a widely used
product, it would not be possible to iteratively evaluate dif-
ferent components. Therefore, we evaluate the potential im-
pacts of COPTER using a high-fidelity simulation LA. In our
deployment scenario, we assume that 10% of peak period
drivers use an app (e.g., Waze, TripGo) through which we
can offer alternative suggestions.2 Our study area includes
diverse offerings with over 170, 000 roadway links and over
1 million daily transit trips. During the AM period (7am-
10am) and PM period (4pm-7pm), this area includes 1.2 mil-
lion and 1.7 vehicle trips respectively. As the effects of con-
gestion continue past the peak period, our study considers
an AM period (7am-12pm) and a PM period (4pm-9pm).

Simulation Model
To measure the potential impact of influencing behavior,
we combined the results of the human study with a state-
of-the-art simulation model of the LA region (Elbery et al.
2018). The simulation model supports city-level networks
with different modes of transportation including cars, buses,
railways, walking, biking, and carpooling. It utilizes both
microscopic and mesoscopic simulation to leverage their
respective strengths of accuracy and scalability. The sim-
ulation spatially partitions the road network enabling dis-
tinct portions of the region to be simulated in parallel.
Additional parallel simulations capture loosely interacting
modes (e.g., the rail and road network). This enables micro-
simulation (i.e., considering driver behavior w.r.t. throttle
position, braking, and lane choice every 0.1s) of the arte-
rial and highway roads encoded as 10, 650 links. Dynamic
calibration aligns previous government planning documents
with observed vehicle flows to capture the changing rates of
vehicles entering the different networks throughout the day
(Du et al. 2018). The model includes validated driver behav-
ior (Rakha, Pasumarthy, and Adjerid 2009) and fuel mod-
els (Fiori, Ahn, and Rakha 2016). Therefore, the model pro-
vides accurate individual and aggregate predictions in terms
of travel time and energy consumption.

Given our deployment assumption, we sample 10% out
of the peak traffic periods to be influenced (7am-10am and

2This percentage was selected through negotiations with busi-
ness groups and public sector stakeholders



Baseline Influence Change (CI)
Total 3,195,637 3,048,278 -4.6%
Fuel (l) (-3.6% -5.6%)
Total 249,221 199,395 -20%
Delay (hr) (-13.6% -26.4%)

Baseline Influence Change (CI)
Total 3,487,982 3,367,675 -3.5%
Fuel (l) (-2.6% -4.3%)
Total 375,137 322,228 -14.1
Delay (hr) (-10% -18%)

Table 3: Results of departures: (left) 7:00 - 12:00 (right) 16:00 - 21:00. The mean for each condition is reported along with the
percent change in the Influence condition. We also report a 95% confidence interval for the difference in mean.

4pm-7pm) for our influenced population. Our experiment
has two conditions:

1. Baseline: Influenced traveler drives their original route
2. Influence: Using the likelihood of adoption from the pre-

vious section, the influenced traveler either takes the max-
imum expected energy reduction route as determined by
COPTER or drives their original route.

To account for the uncertainty in alternative adoption and
background traffic rates, we ran each condition four to seven
times. The simulation model runs in just over real time and
therefore, a running a larger number of trials is prohibitive.
5 − 10 trials is standard practice for similar transportation
studies. We report 95% confidence intervals for difference of
means between the Baseline and Influence trials for total fuel
consumption and congestion related delay. We also report
the resulting changes in mode of the influenced travelers.

Results Table 3 contain the results for AM and PM peri-
ods. These results indicate a potential 4.6% energy reduction
during the AM period and 3.5% energy reduction in the PM
period. Congestion-induced delay results were even greater
at 20% and 14%, respectively. This is significant consider-
ing the influenced population represents about 6% of the to-
tal traffic over the period. To identify an upper bound, we
ran simulations in which every influenced traveler walked.
In these simulations, we observed a reduction in energy con-
sumption of 9% and a reduction in delay of 30% across the
AM and PM periods. Table 4 indicates that almost half the
influenced population is willing to take alternative modes.
These mode switches are based on mode adoption study and
maybe optimistic. Future work will refine these estimates
through a deployment and measuring people’s behavior.

Mode AM Share PM Share
Car 54% 53%
Walk 42.7% 42.8%
Bike 3.6% 3.8%
Bus 38.9% 39.1%
Train 14.4% 14%

Table 4: Share of influenced population that used mode on
trip. Sum is over 100% due to trips using multiple modes.

Related Work
The majority of transportation policy either focuses on sys-
temic changes that are applied evenly to the entire popu-
lation such as congestion pricing/dynamic tolling (Brown-
stone et al. 2003) or studies long term behavior change in
individuals to encourage sustainable commuting (Castellani
et al. 2016). Recently, there has been a shift toward person-
alizing the interventions to increase the use of sustainable
modes. IncenTrip (Sun and Zhang 2018) allocates incentives
from government sponsored programs such that each dol-
lar spent provides the largest environmental impact. TriPod

(Azevedo et al. 2018) takes a different approach in which
companies give travelers points for alternative transportation
choices to be redeemed at local businesses. While these sys-
tems primarily rely on monetary incentives to affect travel
behavior, Metropia (Zhu, Hu, and Chiu 2018) has shown
that congestion information alone can influence traveler de-
parture time. Our work differs from the above by identifying
a personalized recommendation from alternatives based on
network conditions without any monetary incentives.

In addition to algorithmic work in route planning, the AI
community also works on transportation prediction prob-
lems. Using position traces and other data, systems pre-
dict the mode and destination of travelers (Liao et al. 2007;
Song, Kanasugi, and Shibasaki 2016). These works address
prediction problems in isolation, and, as noted by AI and
Society researchers (Inclezan and Pradanos 2017), it is how
AI approaches integrated in smart cities applications that de-
termine if social positive outcomes are realized. By working
across disciplines, we study how energy consumption can be
reduced through voluntary behavior changes. With respect to
the transportation influence problem, COPTER could incor-
porate these isolated approaches to predicting future trips
and monitor if travelers follows the recommendation.

Discussion and Conclusion
This paper presents COPTER, an intelligent travel assistant
that is designed to influence individual travel behavior to re-
duce the total energy consumption of a large city. To do this,
we propose an integrative framework that is a novel com-
bination of multi-modal trip planning, transportation choice
modeling, and machine learning. We introduce the notion of
acceptability of a recommended alternative and define it in
terms of the change in utility. We show how this change can
estimated using ML models trained on the CHTS dataset.
We identify a useful definition of acceptability through a hu-
man mode choice study. Finally, in a simulation experiment
over the Los Angeles area we show that if 10% peak trav-
elers were receiving influence messages, estimated energy
consumption would be reduced by 4.6% in the AM period
and 3.5% in the PM period with corresponding reductions in
congestion induced delay of 20% and 14%, respectively.

Future work will consider additional alternatives. Eco-
routing feedback control selects driving routes based on real-
time link estimates of fuel consumption (Elbery et al. 2018).
Additionally, we would also like to explore techniques for
departure time optimization as well as including carpool-
ing in the set of alternatives. From a social good perspec-
tive, COPTER is ready for deployment with influenced mes-
sages sent through the TripGo application. The next step is
to evaluate the influence model by measuring actual traveler
behavior and then feeding those results back into our simula-
tion study. Later work will define and assess the impacts of
timeliness of recommendation and compelling messaging.
Urban transportation is a huge problem for the environment



and citizen’s quality of life. COPTER demonstrates how AI
techniques can be adapted and combined with research from
other disciplines to alleviate congestion and improve the en-
vironment through transportation influence.
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